精英家教网 > 高中数学 > 题目详情

设函数

(1)当时,求的值域

(2)解关于的不等式:

 

【答案】

(1)值域为;(2)

【解析】

试题分析:(1)函数的对称轴为,且离对称轴较远,所以的最小值为的最大值为,值域为

(2),解出

考点:本题主要考查二次函数的性质,一元二次不等式的解法。

点评:典型题,涉及二次函数的题目,往往需要借助于函数的图象解决问题,一般要考虑“开口方向,对称轴位置,与x轴交点情况,区间端点函数值”等。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分14分)设函数(1)当时,求函数上的最大值;(2)记函数,若函数有零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数

   (1)当时,求函数的定义域;

   (2)若函数的定义域为R,试求的取值范围。

查看答案和解析>>

科目:高中数学 来源:2011年全国新课标普通高等学校招生统一考试文科数学 题型:解答题


(本小题满分10分)选修4-5不等选讲
设函数(1)当时,求不等式的解集;(2)如果不等式的解集为,求的值。

查看答案和解析>>

科目:高中数学 来源:2015届河南郑州智林学校高一下学期第一次月考数学试卷(解析版) 题型:解答题

设函数

(1)当时,求函数的值域;

(2)若函数是(-,+)上的减函数,求实数的七彩教育网取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年河北省高二下学期期中考试理科数学 题型:解答题

 

(本小题满分12分)

设函数

(1)当时,求的最大值;

(2)令,(),其图象上任意一点处切线的斜率恒成立,求实数的取值范围;

(3)当,方程有唯一实数解,求正数的值.

 

查看答案和解析>>

同步练习册答案