A. | x=-3或4x+3y-15=0 | B. | 4x-3y+15=0 | ||
C. | 4x+3y-15=0 | D. | x=-3或4x-3y+15=0 |
分析 算出圆心为O(0,0)、半径r=5,根据垂径定理算出直线到圆心的距离等于3.当直线斜率存在时设直线方程为y-1=k(x+3),由点到直线的距离公式建立关于k的等式,解出k=$\frac{4}{3}$,可得此时直线的方程;当直线斜率不存在时,直线方程为x+3=0,到圆心的距离也等于3,符合题意.由此即可得出所求的直线方程.
解答 解:圆x2+y2=5的圆心为O(0,0),半径r=5.设圆心到直线的距离为d,
①当过点M(-3,1)的直线斜率存在时,设直线方程为y-1=k(x+3),即kx-y+3k+1=0,
∵直线圆x2+y2=25截得弦长为8,
∴根据垂径定理,得圆心到直线的距离d=3.
根据点到直线的距离公式,得$\frac{|3k+1|}{\sqrt{{k}^{2}+1}}$=3,解之得k=$\frac{4}{3}$,
此时直线的方程为4x-3y+15=0;
②当过点M(-3,1)的直线斜率不存在时,
直线方程为x=-3.
由圆心到直线的距离d=3,可得直线被圆截得的弦长也等于8,符合题意.
综上所述,可得所求的直线方程为4x-3y+15=0或x=-3.
故选D.
点评 本题给出经过定点的直线被圆O截得的弦长,求直线的方程.着重考查了直线的方程、圆的方程和直线与圆的位置关系等知识,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{48}{7}$ | B. | 5 | C. | $\frac{{4\sqrt{21}}}{7}$ | D. | 25 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -21或19 | B. | -11或9 | C. | -21或9 | D. | -11或19 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com