精英家教网 > 高中数学 > 题目详情

(9分)已知上的点.
(1)当中点时,求证
(2)当二面角的大小为的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知四棱锥的底面是矩形,侧棱长相等,棱锥的高为4,其俯视图如图所示.
(1)作出此四棱锥的主视图和侧视图,并在图中标出相关的数据;
(2)求该四棱锥的侧面积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)
一个多面体的直观图和三视图如下: (其中分别是中点)

(1)求证:平面;
(2)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正三棱柱ABC—A1B1C1的侧面对角线A1B与侧面成45°角,AB=4cm,求这个棱柱的侧面积。(12分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)
如图1所示,在平行六面体ABCD—A1B1C1D1中,已知AB=5,AD=4,AA1=3,AB⊥AD,∠A1AB=∠A1AD=。(1)求证:顶点A1在底面ABCD上的射影O在∠BAD的平分线上;
(2)求这个平行六面体的体积。

图1                                      

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,FD垂直于矩形ABCD所在平面,CE//DF, ∠DEF=900
(1)求证:BE//平面ADF;
(2)若矩形ABCD的一个边AB="3," 另一边BC=2,EF=2,求几何体ABCDEF的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设m,n是两条不同的直线,是三个不同的平面,给出下列命题,正确的是(  ).

A.若,则
B.若,则
C.若,则
D.若,则

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

 (本小题满分12分)请你设计一个包装盒,如下图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A、B、C、D四个点重合于图中的点P,正好形成一个正四棱挪状的包装盒E、F在AB上,是被切去的一等腰直角三角形斜边的两个端点.设AE= FB=x(cm).

(I)某广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?
(II)某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.[

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,求这个多面体最长的一条棱的长.

查看答案和解析>>

同步练习册答案