精英家教网 > 高中数学 > 题目详情
在△ABC中,AB=AC=5,BC=6,PA⊥平面ABC,PA=8,求点P到BC的距离.
取BC的中点O,连接AO,PO,则BC⊥AO.(2分)
∵PA⊥BC,PA∩AO=A,
∴BC⊥平面PAO.(5分)
又PO?平面PAO,
∴BC⊥PO,(8分)
∴线段PO的长即为P到BC的距离,(10分)
在Rt△ABO中,AO=
52-32
=4,
在Rt△PAO中,PO=
82+42
=4
5

∴点P到BC的距离是4
5
.(13分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知空间四边形ABCD中,AB = CD = 3,E、F分别为BCAD上的点,且EF =,则直线ABCD所成的角的大小是        

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

长方体ABCD-A1B1C1D1中,若AB=BC=a,AA1=2a,则点D到平面A1BC的距离为(  )
A.
2
5
3
a
B.
3
5
2
a
C.
2
5
5
a
D.
6
3
a
C

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知平行六面体ABCD-A1B1C1D1中AB=4,AD=3,AA1=5,∠BAD=90,∠BAA1=∠DAA1=60,则|
AC1
|
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在矩形ABCD中,AB=3,BC=4,PA⊥平面ABCD,且PA=1,PE⊥BD,E为垂足,则PE的长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知ABC-A1B1C1是各条棱长均等于a的正三棱柱,D是侧棱CC1的中点.点C1到平面AB1D的距离(  )
A.
2
4
a
B.
2
8
a
C.
3
2
4
a
D.
2
2
a

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:已知P是正方形ABCD所在平面外一点,点P在平面ABCD内的射影O是正方形的中心,PO=OD=a,E是PD的中点
(1)求证:PD⊥平面AEC
(2)求直线BP到平面AEC的距离
(3)求直线BC与平面AEC所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,若正方体ABCD-A1B1C1D1的棱长为1,则点C到平面A1BD的距离为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥S-ABCD,底面为正方形,SA⊥底面ABCD,AB=AS=a,M、N分别为AB、SC中点.
(Ⅰ)求四棱锥S-ABCD的表面积;
(Ⅱ)求证:MN平面SAD.

查看答案和解析>>

同步练习册答案