精英家教网 > 高中数学 > 题目详情

已知函数
(1)若是增函数,求的取值范围;
(2)已知,对于函数图象上任意不同两点,,其中,直线的斜率为,记,若求证:.

(1);(2)详见解析

解析试题分析:(1)先求,由题意恒成立,参变分离得,进而求的取值范围;
(2)首先将向量式坐标化,得三点坐标的关系,表示,进而表示,然后根据两点坐标结合函数的解析式表示,再后作差比较
-,因为,故只需证明,再恒等变形为,进而,设,构造自变量为的函数,求其最大值,只需说明最大值小于0.
试题解析:(1)由,又当时,,所以
(II),∵
,∴
+1,-,∵
,∴,要证,只要证
,设,则
显然,考虑上的单调性,
,对称轴,则,故递减,则有,故.
考点:1、导数在单调性上的应用;2、直线的斜率;3、向量的坐标运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数处的切线与轴平行.
(1)求的值和函数的单调区间;
(2)若函数的图象与抛物线恰有三个不同交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数单调递增区间;
(2)若存在,使得是自然对数的底数),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
是函数的极值点,1和是函数的两个不同零点,且,求.
若对任意,都存在为自然对数的底数),使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数。(为常数,
(Ⅰ)若是函数的一个极值点,求的值;
(Ⅱ)求证:当时,上是增函数;
(Ⅲ)若对任意的,总存在,使不等式成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(1)当时判断的单调性;
(2)若在其定义域为增函数,求正实数的取值范围;
(3)设函数,当时,若,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图像过原点,且在处的切线为直线
(Ⅰ)求函数的解析式;
(Ⅱ)求函数在区间上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数,数列,满足0<<1, ,数列满足
(Ⅰ)求函数的单调区间;
(Ⅱ)求证:0<<1;
(Ⅲ)若,则当n≥2时,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为函数图象上一点,为坐标原点,记直线的斜率
(1)若函数在区间上存在极值,求实数的取值范围;
(2)当时,不等式恒成立,求实数的取值范围;
(3)求证:

查看答案和解析>>

同步练习册答案