精英家教网 > 高中数学 > 题目详情
19.点S在平面ABC外,SB⊥AC,SB=AC=4,E、F分别是SC和AB的中点,则EF的长是(  )
A.2$\sqrt{2}$B.$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.2

分析 先取BC的中点D,连接ED与FD,根据中位线定理可知ED∥SB,FD∥AC,根据题意可知三角形EDF为等腰直角三角形,然后解三角形即可.

解答 解:取BC的中点D,连接ED与FD,
∵E、F分别是SC和AB的中点,点D为BC的中点,
∴ED∥SB,FD∥AC,
而SB⊥AC,SB=AC=4,则三角形EDF为等腰直角三角形,
则ED=FD=2,即EF=$2\sqrt{2}$.
故选:A.

点评 本题主要考查了中位线定理,以及异面直线所成角的应用,同时考查了转化与划归的思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.设点F是△ABC的边AB上的中点,O为任意点,求证:$\overrightarrow{OF}=\frac{1}{2}(\overrightarrow{OA}+\overrightarrow{OB})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.正四棱锥P-ABCD的高为$\sqrt{3}$,侧棱长为$\sqrt{7}$,则它的斜高为(  )
A.2B.4C.$\sqrt{5}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在棱长为a的正方体ABCD-A1B1C1D1中,求A到平面A1BD的距离d.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,圆O的直径AB=8,圆周上过点C的切线与BA的延长线交于点E,过点B作AC的平行线交EC的延长线于点P.
(Ⅰ)求证:BE2=CE•PE
(Ⅱ)若EC=2$\sqrt{5}$,求PB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.下列说法中:
①两条直线都和同一个平面平行,则这两条直线平行;
②在平行投影下,与投影面平行的平面图形留下的影子,与这个平面图形的形状和大小完全相同;
③一个圆绕其任意一条直径旋转180°所形成的旋转体叫做球;
④a∥b,b?α⇒a∥α;
⑤已知三条两两异面的直线,则存在无穷多条直线与它们都相交.
则正确的序号是②⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在四面体A-BCD中,E,F分别是AB,CD的中点,若AC,BD所成的角为60°,且BD=AC=1,求EF的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,BC是圆O的直径,点F在弧$\widehat{BC}$上,点A为弧$\widehat{BF}$的中点,做AD⊥BC于点D,BF与AD交于点E,BF与AC交于点G.
(Ⅰ)证明:AE=BE
(Ⅱ)若AC=9,GC=7,求圆O的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知圆C1:x2+y2-4x-4y-1=0,圆C2:x2+y2+2x+8y-8=0,圆C1与圆C2的位置关系为(  )
A.外切B.相离C.相交D.内切

查看答案和解析>>

同步练习册答案