精英家教网 > 高中数学 > 题目详情
四棱锥S-ABCD的三视图和直观图如图所示,其中主视图和左视图为两个全等的直角三角形,俯视图为正方形,M,N,P分别为AB,SA,AD的中点.
(1)求四棱锥S-ABCD的体积和表面积;
(2)求证:直线MC⊥平面BPN.
分析:(1)由三视图找到四棱锥的边长关系和垂直关系,进而求体积和表面积
(2)先证明线线垂直,再用线面垂直的判定定理证明线面垂直
解答:(1)解:由三视图知SD⊥底面ABCD,底面ABCD是正方形,AB=1,SD=2
∴底面ABCD的面积S=1×1=1
VS-ABCD=
1
3
×S×SD=
1
3
×1×2=
2
3

又由题意知AB⊥AD,AB⊥SD,且AD∩SD=D
∴AB⊥面SAD
∴AD⊥SA
同理可证BC⊥SC
∴△SAB,△SBC是直角三角形
∴S=S△SAD+S△SCD+S△SAB+S△SBC+S=
1
2
×AD×SD+
1
2
×CD×SD+
1
2
×AB×SA+
1
2
×BC×SC+AB×BC

=
1
2
×1×2+
1
2
×1×2+
1
2
×1×
5
+
1
2
×1×
5
+1
=3+
5

(2)证明:连接PN,PB,设PB∩CM=O
则PN∥SD
∴PN⊥面ABCD
又MC?面ABCD
∴PN⊥MC
∵在正方形ABCD中,P、M分别是AD、AB的中点
∴△PAB≌△MBC
∴∠PBA=∠MCB
又∠MCB+∠BMC=90°
∴∠PBA+∠BMC=90°
∴PB⊥MC
又PN∩PB=B,且PN、PB?面BPN
∴MC⊥面BPN
点评:本题考查由三视图求面积、体积,以及线面垂直的证明,要求能够从三视图中发现几何体的长度关系和平行垂直关系,能熟练应用线面垂直的判定定理.属简单题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正四棱锥S-ABCD,底面上的四个顶点A、B、C、D在球心为O的半球底面圆周上,顶点S在半球面上,则半球O的体积和正四棱锥S-ABCD的体积之比为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的
2
倍,P为侧棱SD上的点.
(Ⅰ)求证:AC⊥SD;
(Ⅱ)若SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

下面的一组图形为侧棱SA垂直于底面ABCD的某一四棱锥S-ABCD的侧面与底面,画出四棱锥S-ABCD的空间图形并研究
(I)求直线SC与平面SAD所成的角的大小;
(Ⅱ)求二面角B-SC-D的大小;
(Ⅲ)求此四棱锥S-ABCD外接球半径与内切球半径之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区一模)已知四棱锥S-ABCD的底面ABCD是直角梯形,AB∥CD,BC⊥AB,侧面SAB为正三角形,AB=BC=4,CD=SD=2.如图所示.
(1)证明:SD⊥平面SAB;
(2)求四棱锥S-ABCD的体积VS-ABCD

查看答案和解析>>

科目:高中数学 来源: 题型:

如图已知四棱锥S-ABCD的底面是直角梯形,AB∥DC,∠DAB=90°,SA⊥底面ABCD,且SA=AD=DC=
12
AB=1,M
是SB的中点.
(1)证明:平面SAD⊥平面SCD;
(2)求AC与SB所成的角;
(3)求二面角M-AC-B的大小.

查看答案和解析>>

同步练习册答案