精英家教网 > 高中数学 > 题目详情
已知f(x)=(a-2)x2+2(a-2)x-4.
(1)当a=3时,解关于x的不等式f(x)≥-1;
(2)若f(x)<0对一切x∈R恒成立,试确定实数a的取值范围.
分析:(1)将a=3代入f(x),即可列出关于x的不等式,求解即可得到不等式f(x)≥-1的解集;
(2)对a进行分类讨论,利用二次函数的性质列出不等关系,求解即可得到实数a的取值范围.
解答:解:(1)当a=3时,f(x)=x2+2x-4,
∴f(x)≥-1,即x2+2x-4≥-1,即x2+2x-3≥0,
∴x≤-3或x≥1,
∴关于x的不等式f(x)≥-1的解集为{x|x≤-3或x≥1};
(2)f(x)<0对一切x∈R恒成立,即(a-2)x2+2(a-2)x-4<0对一切x∈R恒成立,
①当a-2=0,即a=2时,-4<0对x∈R恒成立,
∴a=2满足题意;
②当
a<0
△=22(a-2)2-4×(-4)×(a-2)<0
,解得-2<a<0.
综合①②,可得-2<a<0或a=2,
故若f(x)<0对一切x∈R恒成立,实数a的取值范围为(-2,0)∪{2}.
点评:本题考查了一元二次不等式的解法,函数的恒成立问题,同时考查了二次函数的相关性质,研究二次函数时,要抓住考口方向,对称轴以及判别式等.对于恒成立问题解决的方法常有:参变量分离法,求最值法,数形结合法.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x2+(a+1)x+lg|a+2|(a≠-2,a∈R),
(Ⅰ)若f(x)能表示成一个奇函数g(x)和一个偶函数h(x)的和,求g(x)和h(x)的解析式;
(Ⅱ)若f(x)和g(x)在区间(-∞,(a+1)2]上都是减函数,求a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,比较f(1)和
16
的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2x3-6x2+a(a为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的值域是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2(a∈R),g(x)=2lnx.
(1)讨论函数F(x)=f(x)-g(x)的单调性;
(2)是否存在这样的a的值,使得f(x)≥g(x)+2(x∈R*)恒成立,若不存在,请说明理由;若存在,求出所有这样的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2cos2
wx
2
+
3
sinwx+a的图象上相邻两对称轴的距离为
π
2

(1)若x∈R,求f(x)的递增区间;
(2)若x∈[0,
π
2
]时,f(x)的最大值为4,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=logax(a>0且a≠1),如果对任意的x∈[
13
,2]
,都有|f(x)|≤1成立,试求a的取值范围.

查看答案和解析>>

同步练习册答案