精英家教网 > 高中数学 > 题目详情
在△ABC中,内角A,B,C的对边分别为a,b,c,已知a,b,c成等比数列,cosB=
3
4

(1)设
BA
BC
=
3
2
,求△ABC的面积S△ABC
(2)求
1
tanA
+
1
tanC
的值.
分析:(1)先利用同角三角函数基本关系求得sinB的值,根据
BA
BC
=
3
2
求得ac的值,然后代入三角形面积公式求得答案.
(2)利用正弦定理把b2=ac的边转化成角的正弦,然后把
1
tanA
+
1
tanC
转化成弦,利用两角和公式化简整理求得结果为sinB,进而把(1)中sinB的值代入即可.
解答:解:由已知有b2=ac,cosB=
3
4
,于是sinB=
1-cos2B
=
7
4

(1)∵
BA
BC
=
3
2
,即ca•cosB=
3
2
,且cosB=
3
4
,∴ca=2
S△ABC=
1
2
ac•sinB=
1
2
•2•
7
4
=
7
4

(2)由b2=ac及正弦定理得sin2B=sinAsinC.
于是
1
tanA
+
1
tanC
=
cosA
sinA
+
cosC
sinC
=
sinCcosA+cosCsinA
sinAsinC
=
sin(A+C)
sin2B

=
sinB
sin2B
=
1
sinB
=
4
7
7
点评:本题主要考查了正弦定理的应用,向量积的计算,同角三角函数基本关系的应用.综合考查了学生的基础知识和运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•天津)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知a=2,c=
2
,cosA=-
2
4

(1)求sinC和b的值;
(2)求cos(2A+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A、B、C所对边长分别为a、b、c,已知a2-c2=b,且sinAcosC=3cosAsinC,则b=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,且a,b是方程x2-2
3
x+2=0的两根,2cos(A+B)=1,则△ABC的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别是a,b,c.已知A=45°,a=6,b=3
2
,则B的大小为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别是a,b,c,已知B=60°,不等式x2-4x+1<0的解集为{x|a<x<c},则b=
13
13

查看答案和解析>>

同步练习册答案