精英家教网 > 高中数学 > 题目详情

【题目】若数列同时满足条件:①存在互异的使得为常数);

②当时,对任意都有,则称数列为双底数列.

(1)判断以下数列是否为双底数列(只需写出结论不必证明);

; ②; ③

(2)设若数列是双底数列,求实数的值以及数列的前项和

(3)设,是否存在整数,使得数列为双底数列?若存在,求出所有的的值;若不存在,请说明理由.

【答案】(1) ①③是双底数列,②不是双底数列(2) (3)存在整数,使得数列为双底数列

【解析】试题分析:(1)根据双底数列的定义可判定①③是双底数列,②不是双底数列;(2)由双底数列定义可知,解得时,数列成等差, ,当时, 从而可得结果;(3)若数列是双底数列,则有解(否则不是双底数列),即 该方程共有四组解,分别验证是否为双底数列即可得结果.

试题解析:(1)①③是双底数列,②不是双底数列;

(2)数列时递减,当时递增,

由双底数列定义可知,解得

时,数列成等差,

时,

综上, .

(3)

若数列是双底数列,则有解(否则不是双底数列),

故当时,

时, ;当时, ;当时,

从而 数列不是双底数列;

同理可得:

时, 数列不是双底数列;

时, 数列是双底数列;

时, 数列是双底数列;

综上,存在整数,使得数列为双底数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中国诗词大会的播出引发了全民读书热,某学校语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如右图,若规定得分不低于85分的学生得到“诗词达人”的称号,低于85分且不低于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号.根据该次比赛的成绩按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词能手”称号的人数为(  )

A. 6B. 5C. 4D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两地相距海里,某货轮匀速行驶从甲地运输货物到乙地,运输成本包括燃料费用和其他费用.已知该货轮每小时的燃料费与其速度的平方成正比,比例系数为,其他费用为每小时元,且该货轮的最大航行速度为海里/小时.

)请将该货轮从甲地到乙地的运输成本表示为航行速度(海里/小时)的函数.

)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=sin 2xcos 2x图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将图象上所有点向右平移个单位长度,得到函数g(x)的图象,则g(x)图象的一条对称轴方程是(  )

A. x=- B. x

C. x D. x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的正四棱柱的底面边长为侧棱,点在棱上,

().

(1)当时,求三棱锥的体积;

(2)当异面直线所成角的大小为时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱ABC-A1B1C1中,AB=3AA1=4MAA1的中点,PBC上的一点,且由P沿棱柱侧面经过棱CC1M的最短路线长为,设这条最短路线与CC1的交点为N.求:

1)该三棱柱的侧面展开图的对角线的长;

2PCNC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线 经过伸缩变换后得到曲线.以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)求出曲线的参数方程;

(Ⅱ)若分别是曲线上的动点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方形ABCD中,EF分别是BCCD的中点,GEF的中点,现在沿AEAFEF把这个正方形折成一个空间图形,使BCD三点重合,重合后的点记为H,那么,在这个空间图形中必有(  )

A. 所在平面B. 所在平面

C. 所在平面D. 所在平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P–ABCD中,底面ABCD是边长为6的正方形,PD平面ABCDPD=8

(1) PB与平面ABCD所成角的大小;

(2) 求异面直线PBDC所成角的大小.

查看答案和解析>>

同步练习册答案