精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线的参数方程为(为参数),在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为为直线上的任意一点.

1为曲线上任意一点,求两点间的最小距离;

2)过点作曲线的两条切线,切点为,曲线的对称中心为点,求四边形面积的最小值.

【答案】1.(2

【解析】

1)将曲线的参数方程化为普通方程可得圆,直线的极坐标方程化为直角坐标方程,由直线与圆的位置关系可得两点间的最小距离;

2)△PACPBC为直角三角形,AC=BC=1,根据图形的对称性及勾股定理可知,四边形的面积,可得PC最小时面积最小,由此能求出面积的最小值.

1)由曲线的参数方程为(为参数),得

曲线是以为圆心,以1为半径的圆.

,化简得

为直线上的任意一点,为圆上任意一点,

(其中为圆心)

.

2)由题意,PACPBC为直角三角形,AC=BC=1

根据图形的对称性及勾股定理可知,

四边形的面积.

由(1)知,

四边形面积的最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在10件产品中,有3件一等品,4件二等品,3件三等品。从这10件产品中任取3件,求:

I) 取出的3件产品中一等品件数X的分布列和数学期望;

II) 取出的3件产品中一等品件数多于二等品件数的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌电脑体验店预计全年购入台电脑,已知该品牌电脑的进价为/台,为节约资金决定分批购入,若每批都购入为正整数)台,且每批需付运费元,储存购入的电脑全年所付保管费与每批购入电脑的总价值(不含运费)成正比(比例系数为),若每批购入台,则全年需付运费和保管费.

1)记全年所付运费和保管费之和为元,求关于的函数.

2)若要使全年用于支付运费和保管费的资金最少,则每批应购入电脑多少台?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着智能手机的普及,使用手机上网成为了人们日常生活的一部分,很多消费者对手机流量的需求越来越大.某通信公司为了更好地满足消费者对流量的需求,准备推出一款流量包.该通信公司选了人口规模相当的个城市采用不同的定价方案作为试点,经过一个月的统计,发现该流量包的定价: (单位:元/月)和购买总人数(单位:万人)的关系如表:

定价x(元/月)

20

30

50

60

年轻人(40岁以下)

10

15

7

8

中老年人(40岁以及40岁以上)

20

15

3

2

购买总人数y(万人)

30

30

10

10

(Ⅰ)根据表中的数据,请用线性回归模型拟合的关系,求出关于的回归方程;并估计元/月的流量包将有多少人购买?

(Ⅱ)若把元/月以下(不包括元)的流量包称为低价流量包,元以上(包括元)的流量包称为高价流量包,试运用独立性检验知识,填写下面列联,并通过计算说明是否能在犯错误的概率不超过的前提下,认为购买人的年龄大小与流量包价格高低有关?

定价x(元/月)

小于50元

大于或等于50元

总计

年轻人(40岁以下)

中老年人(40岁以及40岁以上)

总计

参考公式:其中

其中

参考数据:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】改编自中国神话故事的动画电影《哪吒之魔童降世》自726日首映,在不到一个月的时间,票房收入就超过了38亿元,创造了中国动画电影的神话.小明和同学相约去电影院观看《哪吒之魔童降世》,影院的三个放映厅分别在730800830开始放映,小明和同学大约在740830之间到达影院,且他们到达影院的时间是随机的,那么他们到达后等待的时间不超过10分钟的概率是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是抛物线内一点,是抛物线的焦点,是抛物线上任意一点,且已知的最小值为2.

1)求抛物线的方程;

2)抛物线上一点处的切线与斜率为常数的动直线相交于,且直线与抛物线相交于两点.问是否有常数使

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=,若关于的方程恰好有 4 个不相等的实数解,则实数的取值范围为( )

A. B. C. D. (0,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中).

(1)当时,求函数的图像在处的切线方程;

(2)若恒成立,求的取值范围;

(3)设,且函数有极大值点,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为t为参数),以坐标原点O为极点,以x轴的非负半轴为极轴,取相同的单位长度建立极坐标系,曲线C的极坐标方程为.

1)写出直线的普通方程和曲线C的直角坐标方程;

2)已知定点,直线与曲线C分别交于PQ两点,求的值.

查看答案和解析>>

同步练习册答案