【题目】已知数列{an}满足a1=2,且anan+1+an+1﹣2an=0(n∈N+).
(1)求a2、a3、a4的值;
(2)猜想数列{an}的通项公式,并用数学归纳法加以证明.
【答案】
(1)解:由题得 ,又a1=2,则 , ,
(2)解:猜想 .
证明:①当n=1时, ,故命题成立.
②假设当n=k时命题成立,即
则当n=k+1时, ,
故命题也成立.
综上,对一切n∈N+都有 成立
【解析】(1)由题意可得 ,又a1=2,可求得a2 , 再由a2的值求 a3 , 再由a3 的值求出a4的值.(2)猜想 ,检验n=1时等式成立,假设n=k时命题成立,证明当n=k+1时命题也成立.
【考点精析】本题主要考查了数列的通项公式和数学归纳法的定义的相关知识点,需要掌握如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式;数学归纳法是证明关于正整数n的命题的一种方法才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln(1+x)﹣x+ x2(k≥0). (Ⅰ)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)的单调区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(Ⅰ)求y关于t的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为: = , = ﹣ .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E: (a>b>0)的上顶点为P(0,1),过E的焦点且垂直长轴的弦长为1.若有一菱形ABCD的顶点A、C在椭圆E上,该菱形对角线BD所在直线的斜率为﹣1.
(1)求椭圆E的方程;
(2)当直线BD过点(1,0)时,求直线AC的方程;
(3)当∠ABC= 时,求菱形ABCD面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex+ax﹣1(e为自然对数的底数). (Ⅰ)当a=1时,求过点(1,f(1))处的切线与坐标轴围成的三角形的面积;
(Ⅱ)若f(x)≥x2在(0,1)上恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆中心是原点O,它的短轴长为 ,右焦点F(c,0)(c>0),它的长轴长为2a(a>c>0),直线l: 与x轴相交于点A,|OF|=2|FA|,过点A的直线与椭圆相交于P、Q两点.
(1)求椭圆的方程和离心率;
(2)若 ,求直线PQ的方程;
(3)设 (λ>1),过点P且平行于直线l的直线与椭圆相交于另一点M,证明: .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com