精英家教网 > 高中数学 > 题目详情

【题目】已知函数

)求函数的单调区间;

)求证:

曲线上的所有点都落在圆

【答案】(单调递增区间为,单调递减区间为;()证明见解析.

【解析】

试题分析:()求单调区间,只要求得导函数,然后解不等式可得增区间,解不等式可得减区间;要证不等式,只要证,因此可设,求导后研究它的单调性,得最小值,若最小值不小于0,即证;要证此命题就是要证不等式,为此利用放缩,由可得,从而有,代入可证得结论.

试题解析:函数的定义域为,由于,故只需要考虑的单调性

再令

时,,则单调递增,又

单调递减

的单调递增区间为,单调递减区间为

单调递减

故曲线上的所有点都落在圆

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了参加师大附中第30届田径运动会的开幕式,高三年级某6个班联合到集市购买了6根竹竿,作为班期的旗杆之用,它们的长度分别为3.8,4.3,3.6,4.5,4.0,4.1单位:米

1若从中随机抽取两根竹竿,求长度之差不超过0.5米的概率;

2若长度不小于4米的竹竿价格为每根10元,长度小于4米的竹竿价格为每根从这6根竹竿中随机抽取两根,若期望这两根竹竿的价格之和为18元,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线).

(1)证明:直线过定点;

(2)若直线不经过第四象限,求的取值范围;

(3)若直线轴负半轴于,交轴正半轴于,△的面积为为坐标原点),求的最小值,并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的两个焦点分别为,且椭圆C过点P3,2

求椭圆C的标准方程;

与直线OP平行的直线交椭圆C于A,B两点,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数.以原点为极点,轴正半轴为极轴建立极坐标系,圆的方程为.

写出直线的普通方程和圆的直角坐标方程;

若点的直角坐标为,圆与直线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为选拔参加“全市高中数学竞赛”的选手,某中学举行了一次“数学竞赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为分)作为样本(样本容量为)进行统计.按照的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在的数据).

(1)求样本容和频率分布直方图中的值并求出抽取学生的平均分;

(2)在选取的样本中,从竞赛成绩在分以上(含)的学生中随机抽取名学生参加“全市中数学竞赛”求所抽取的名学生中至少有一人得分在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且.

(1)求数列的通项公式,并写出推理过程;

(2)令,试比较的大小,并给出你的证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学将100名高二文科生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用AB两种不同的教学方式分别在甲、乙两个班进行教改实验.为了了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如下图).记成绩不低于90分者为“成绩优秀”.

(Ⅰ)根据频率分布直方图填写下面2×2列联表;

甲班(A方式)

乙班(B方式)

总计

成绩优秀

成绩不优秀

总计

(Ⅱ)判断能否在犯错误的概率不超过0.05的前提下认为:“成绩优秀”与教学方式有关?

附:.

P(K2k)

0.25

0.15

0.10

0.05

0.025

k

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的三棱锥中,底面分别是的中点.

1求证:平面

2,求直线与平面所成角的正切值.

查看答案和解析>>

同步练习册答案