精英家教网 > 高中数学 > 题目详情
5.当a=-2时,直线ax+(a+2)y-1=0的倾斜角为0°.

分析 把a=-2代入直线方程,化简后可得直线的倾斜角.

解答 解:当a=-2时,线ax+(a+2)y-1=0化为-2x-1=0,即x=-$\frac{1}{2}$,
其倾斜角为0°.
故答案为:0°.

点评 本题考查直线的倾斜角,是基础的会考题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.若不等式32x-k•3x+4≥0对于任意x∈R恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求下列函数的定义域:
(1)y=lg(x+1)+$\frac{3{x}^{2}}{\sqrt{1-x}}$;
(2)y=log(x-2)(5-x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若直线的倾斜角为α,则直线的斜率为tanα或不存在.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.直线在x轴和y轴上的截距分别为2和-2,求此直线的斜率及倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.经过点P(-3,-5),且倾斜角为90°的直线方程是x=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知定义在R上的奇函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>2f(-x),若g(x)=x2f(x),则不等式g(x)<g(1-3x)的解集是(  )
A.($\frac{1}{4}$,+∞)B.(-∞,$\frac{1}{4}$)C.(0,$\frac{1}{4}$)D.(-∞,$\frac{1}{4}$)∪($\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知tanα=$\frac{3}{4}$,α∈($\frac{π}{2}$,$\frac{3π}{2}$),求:
(1)$\frac{sin(π+α)-sin(\frac{3π}{2}+α)}{cos(3π-α)+2}$;
(2)cos(-π-α)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.下列叙述中:
①若min{m,n}=$\left\{\begin{array}{l}{m(m≤n)}\\{n(m>n)}\end{array}\right.$,则函数f(x)=min{x${\;}^{\frac{1}{3}}$,2x-2,1-3x}存在最大值;
②设函数f(x)=$\frac{1+{x}^{2}}{1-{x}^{2}}$(x≠±1),则f(2)+f(3)+f(4)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+f($\frac{1}{4}$)=0;
③设集合A=[0,$\frac{1}{2}$),B=[$\frac{1}{2}$,1],函数f(x)=$\left\{\begin{array}{l}{x+\frac{1}{2}(x∈A)}\\{-2x+2(x∈B)}\end{array}\right.$,若x0∈A,且f[f(x0)]∈A,则x0的取值范围是($\frac{1}{4}$,$\frac{1}{2}$);
④设函数y=f(x)为函数y=$(\frac{1}{2})^{x}$的反函数,且y=f(-x2-ax+1)在x∈(2,3)上单调递增,则实数a∈[-4,-$\frac{8}{3}$);
⑤若函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-a(x<1)}\\{4(x-a)(x-2a),(x≥1)}\end{array}\right.$恰有2个零点,则实数a的取值范围为[$\frac{1}{2}$,1)∪[2,+∞).
所有正确叙述的序号是①②③⑤.

查看答案和解析>>

同步练习册答案