精英家教网 > 高中数学 > 题目详情

【题目】如图,在正方体ABCD﹣A1B1C1D1中,
(1)求证:AD1⊥平面CDA1B1
(2)求直线AD1与直线BD所成的角.

【答案】解:(1)∵在正方体中AD1⊥A1D,A1B1⊥面ADD1A1
且AD1面ADD1A1 , ∴AD1⊥A1B1
而A1D,A1B1在平面CDA1B1内,且相交
∴AD1⊥平面CDA1B1
(2)连接B1D1 , AB1
∵BD∥B1D1 , ∴∠AD1B1即为所求的角,
而三角形AB1D1为正三角形,故∠AD1B1=60°,
∴直线AD1与直线BD所成的角为60°
【解析】(1)在正方体中AD1⊥A1D,又可得AD1⊥A1B1 , 由线面垂直的判定定理可得;
(2)连接B1D1 , AB1 , 可得∠AD1B1即为所求的角,解三角形可得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在三棱柱中,侧面为矩形, 的中点, 交于点 侧面.

(1)证明:

(2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(x﹣1)2+y2=4
(1)求过点P(3,3)且与圆C相切的直线l的方程;
(2)已知直线m:x﹣y+1=0与圆C交于A、B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿场售价与上市时间的关系如图一的一条折线表示;西红柿的种植成本与上市时间的关系如图二的抛物线段表示.
(1)写出图一表示的市场售价与时间的函数关系式p=f(t);写出图二表示的种植成本与时间的函数关系式Q=g(t);
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价各种植成本的单位:元/102㎏,时间单位:天)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 过圆上任意一点轴引垂线垂足为(点可重合),点的中点.

(1)求的轨迹方程;

(2)若点的轨迹方程为曲线,不过原点的直线与曲线交于两点,满足直线 的斜率依次成等比数列,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A,集合B,若,则实数的取值范围___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是等比数列,数列是等差数列,且 .

求(Ⅰ)求的通项公式;

(Ⅱ)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD﹣A1B1C1D1 , 若E是AD的中点,则异面直线A1B与C1E所成角等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列,定义为数列的一阶差分数列,其中,( ),设

(1)若,求证: 是等比数列,并求出的通项公式;

(2)若,又数列满足:

①求数列的前

②求证:数列中的任意一项总可以表示成该数列中其他两项之积.

查看答案和解析>>

同步练习册答案