精英家教网 > 高中数学 > 题目详情
已知四棱锥P-ABCD的底面ABCD是正方形,M,N分别为AD,PB的中点,且PD⊥底面ABCD,其中PD=AD=a.
(1)求证:MN⊥平面PBC;
(2)求MN与平面ABC所成的角;
(3)求四面体P-MBC的体积.
分析:(1)利用线面垂直的判定定理证明线面垂直.
(2)利用线面所成角的定义确定线面角,然后求出线面角的大小.
(3)利用四面体的体积公式求体积.
解答:解:(1)取PC的中点Q,连DQ,NQ,则NQ∥BC且NQ=
1
2
BC.
因为BC∥DM,DM=
1
2
BC,所以NQ∥DM,且NQ=DM,所以四边形NQDM是平行四边形.
所以DQ∥MN,
因为PD⊥面ABCS,BC?面ABCD,
所以PD⊥BC,
因为BC⊥DQ.
因为PD=AD=a,所以DQ⊥PC,
因为PC∩BC=C,
所以DQ⊥面PBC,因为DQ∥MN,所以MN⊥面PBC.
(2)由(1)知,MN∥DQ,
所以MN与面ABCD所成角即为DQ与面ABCD所成角的大小,
取DC的中点R,连QR,则QR∥PD,
所以QR⊥面ABCD,所以∠QDR即为DQ与面ABCD所成的角.
所以∠QDR=45°,即MN与面ABCD所成角为45°.
(3)因为MN⊥平面PBC,所以VP-MBC=VM-PBC=
1
3
MN?S△PBC=
1
3
×
2
2
1
2
×
2
a?a=
1
6
a3
点评:本题主要考查线面垂直的判定依据线面所成的角,要求熟练掌握相应的判定定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知四棱锥P--ABC的底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,e为PC的中点,F为AD的中点.
(Ⅰ)证明EF∥平面PAB;
(Ⅱ)证明EF⊥平面PBC;
(III)点M是四边形ABCD内的一动点,PM与平面ABCD所成的角始终为45°,求动直线PM所形成的曲面与平面ABCD、平面PAB、平面PAD所围成几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=2CD=2,PB=PC,侧面PBC⊥底面ABCD,O是BC的中点.
(1)求证:PO⊥平面ABCD;
(2)求证:PA⊥BD
(3)若二面角D-PA-O的余弦值为
10
5
,求PB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,E为BC中点,AE与BD交于O点,AB=BC=2CD=2,BD⊥PE.
(1)求证:平面PAE⊥平面ABCD; 
(2)若直线PA与平面ABCD所成角的正切值为
5
2
,PO=2,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,∠DAB=∠ABC=90°,E是线段PC上一点,PC⊥平面BDE.
(Ⅰ)求证:BD⊥平面PAB.
(Ⅱ)若PA=4,AB=2,BC=1,求直线AC与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年山东省济宁一中高三(上)期末数学试卷(理科)(解析版) 题型:解答题

如图,已知四棱锥P--ABC的底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,e为PC的中点,F为AD的中点.
(Ⅰ)证明EF∥平面PAB;
(Ⅱ)证明EF⊥平面PBC;
(III)点M是四边形ABCD内的一动点,PM与平面ABCD所成的角始终为45°,求动直线PM所形成的曲面与平面ABCD、平面PAB、平面PAD所围成几何体的体积.

查看答案和解析>>

同步练习册答案