精英家教网 > 高中数学 > 题目详情
13.已知是定义在R上的函数,且满足①f(4)=0;②曲线y=f(x+1)关于点(-1,0)对称;③当x∈(-4,0)时,$f(x)={log_2}(\frac{x}{{{e^{|x|}}}}+{e^x}-m+1)$,若y=f(x)在x∈[-4,4]上有5个零点,则实数m的取值范围为[-3e-4,1)∪{-e-2}.

分析 可判断f(x)在R上是奇函数,从而可化为当x∈(-4,0)时,$f(x)={log_2}(\frac{x}{{{e^{|x|}}}}+{e^x}-m+1)$,有1个零点,从而转化为xex+ex-m=0在(-4,0)上有1个不同的解,再令g(x)=xex+ex-m,从而求导确定函数的单调性及取值范围,从而解得.

解答 [-3e-4,1)∪{-e-2}
解:∵曲线y=f(x+1)关于点(-1,0)对称;
∴曲线y=f(x)关于点(0,0)对称;∴f(x)在R上是奇函数,
∴f(0)=0,又∵f(4)=0,∴f(-4)=0,
而y=f(x)在x∈[-4,4]上恰有5个零点,
故x∈(-4,0)时,$f(x)={log_2}(\frac{x}{{{e^{|x|}}}}+{e^x}-m+1)$有1个零点,
x∈(-4,0)时f(x)=log2(xex+ex-m+1),
故xex+ex-m=0在(-4,0)上有1个不同的解,
令g(x)=xex+ex-m,
g′(x)=ex+xex+ex=ex(x+2),
故g(x)在(-4,-2)上是减函数,在(-2,0)上是增函数;
而g(-4)=-4e-4+e-4-m,g(0)=1-m=-m,g(-2)=-2e-2+e-2-m,
而g(-4)<g(0),
故-2e-2+e-2-m-1<0<-4e-4+e-4-m-1,
故-3e-4≤m<1或m=-e-2
故答案为:[-3e-4,1)∪{-e-2}

点评 题考查了导数的综合应用及函数的性质的判断与应用,同时考查了方程的根与函数的零点的关系应用.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.定义域为{x|x>0}的函数f(x)满足f(xy)=f(x)+f(y)且f(8)=3,则$f({\sqrt{2}})$=(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{3}{8}$D.$\frac{3}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{6}{x-1}$,
(1)判断函数f(x)在(1,+∞)上的单调性并用单调性的定义证明;
(2)若x∈[2,4],求函数f(x)值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.宝宝的健康成长是妈妈们最关心的问题,父母亲为婴儿选择什么品牌的奶粉一直以来都是育婴中的一个重要话题.为了解国产奶粉的知名度和消费者的信任度,某调查小组特别调查记录了某大型连锁超市2015年与2016年这两年销售量前5名的五个奶粉的销量(单位:罐),绘制出如图1的管状图:

(1)根据给出的这两年销量的管状图,对该超市这两年品牌奶粉销量的前五强进行排名;
(2)分别计算这5个品牌奶粉2016年所占总销量(仅指这5个品牌奶粉的总销量)的百分比(百分数精确到个位),并将数据填入如图2饼状图中的括号内;
(3)试以(2)中的百分比为概率,若随机选取2名购买这5个品牌中任意1个品牌的消费者进行采访,记X为被采访者中购买飞鹤奶粉的人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,半圆O的直径为2,A为直径延长线上的一点,OA=2,B为半圆上任意一点,以AB为一边作等边三角形ABC,设∠AOB=α(0<α<π).
(1)当α为何值时,四边形OACB面积最大,最大值为多少;
(2)当α为何值时,OC长最大,最大值为多少.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.过点P(-1,1)作圆C:(x-t)2+(y-t+2)2=1(t∈R)的切线,切点分别为A,B,则$\overrightarrow{PA}•\overrightarrow{PB}$的最小值为$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.将甲,乙等5位老师分别安排到高二的三个不同的班级任教,则每个班至少安排一人的不同方法数为(  )
A.150种B.180 种C.240 种D.540 种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在单位圆中,面积为1的扇形所对的弧长为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆x2+y2=r2,点P(x0,y0)是圆上一点,自点P向圆作切线,P是切点,求切线的方程.

查看答案和解析>>

同步练习册答案