【题目】设函数,,(其中).
(1)时,求函数的极值;
(2)证:存在,使得在内恒成立,且方程在内有唯一解.
【答案】(1) ;;(2)见解析.
【解析】
(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;
(Ⅱ)求出f(x)的导数,通过讨论m的范围,求出f(x)的单调区间,求出满足条件的m的范围,从而证出结论即可.
解:(I)当时, ,
令,得,,当变化时,的变化如下表:
极大值 | 极小值 |
由表可知,;;
(II)设,,,若要有解,需有单减区间,则要有解
,由,,记为函数的导数
则 ,当时单增,令,由,得,需考察与区间的关系:
①当时,,,在上,单增,
故单增,,无解;
②当,时,,,因为单增,在上,在上
当时,
(i)若,即时,,单增,,无解;
(ii)若,即,,在上,,单减;,,在区间上有唯一解,记为;在上,单增 ,,当时,故在区间上有唯一解,记为,则在上,在上,在上,当时,取得最小值,此时
若要恒成立且有唯一解,当且仅当,即,由有
联立两式解得.综上,当时,
科目:高中数学 来源: 题型:
【题目】4月23人是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”
(1)求x的值并估计全校3000名学生中读书谜大概有多少?(经频率视为频率)
非读书迷 | 读书迷 | 合计 | |
男 | 15 | ||
女 | 45 | ||
合计 |
(2)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关? 附:K2= n=a+b+c+d
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合为下述条件的函数的集合:①定义域为;②对任意实数,都有.
(1)判断函数是否为中元素,并说明理由;
(2)若函数是奇函数,证明:;
(3)设和都是中的元素,求证:也是中的元素,并举例说明,不一定是中的元素.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90℃,BC=2AD,△PAB与△PAD都是等边三角形,平面ABCD⊥平面PBD.
(I)证明:CD⊥平面PBD;
(II)求二面角A﹣PD﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果函数y=f(x)的导函数的图象如图所示,给出下列判断:
①函数y=f(x)在区间(-3,-1)内单调递增;②当x=2时,函数y=f(x)有极小值;
③函数y=f(x)在区间内单调递增;④当时,函数y=f(x)有极大值.
则上述判断中正确的是( )
A. ①② B. ②③ C. ③④ D. ③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)= sin ,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2 , 则m的取值范围是( )
A.(﹣∞,﹣6)∪(6,+∞)
B.(﹣∞,﹣4)∪(4,+∞)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com