精英家教网 > 高中数学 > 题目详情
6.设函数f(x)=ln(x2-x-12)的定义域为集合A,集合B=$\left\{{x|\frac{8}{x+2}>1}\right\}$.请你写出一个不等式,使它的解集为∁UA∩B,并说明理由.

分析 根据函数和不等式的解法求出集合A,B,结合集合的基本运算进行求解即可.

解答 解:由x2-x-12>0得x>4或x<-3,即A=(-∞,-3)∪(4,+∞),
由$\frac{8}{x+2}$>1得$\frac{8}{x+2}$-1=$\frac{6-x}{x+2}$>0,即(x-6)(x+2)<0,即-2<x<6,
则B=(-2,6),
则∁UA=[-3,4],
UA∩B=(-2,4],
则对应的不等式可以是$\frac{x-4}{x+2}$≤0.
因为分式不等式中分母不能为0,则-2取不到.

点评 本题主要考查集合的基本运算,根据函数和不等式的解法求出集合A,B是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知双曲线的左、右焦点为F1和F2,在左支上过点F1的弦AB的长为10,若2a=9,则△ABF2的周长为(  )
A.16B.26C.21D.38

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.定义:函数y=[x]为“下取整函数”,其中[x]表示不大于x的最大整数;函数y=<x>为“上取整函数”,其中<x>表示不小于x的最小整数;例如根据定义可得:[1.3]=1,[-1.3]=-2,<-2.3>=-2,<2.3>=3
(1)函数f(x)=<x•[x]>,x∈[-2,2];求$f({-\frac{3}{2}})$和$f({\frac{3}{2}})$;
(2)判断(1)中函数f(x)的奇偶性;
(3)试用分段函数的形式表示函数:y=[x]+<x>,(-1≤x≤1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为2:3:5,现按型号用分层抽样的方法随机抽出容量为n的样本,若抽到24件乙型产品,则n等于(  )
A.80B.70C.60D.50

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设数列{an}的前项n和为Sn,若对于任意的正整数n都有Sn=2an-3n.
(1)设bn=an+3,求证:数列{bn}是等比数列,并求出{an}的通项公式.
(2)求数列{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知$f(x)=\left\{\begin{array}{l}-{x^2}+4x+2\;\;x≤0\\{x^2}+2x+2\;\;\;\;x>0\end{array}\right.$,若不等式f(x+a)>f(2a-x)在[a-1,a]上恒成立,则实数a的取值范围是(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知集合A={x|x2-x-2<0,x∈R},集合B={x||x-2|≥1,x∈R},则A∩B={x|-1<x≤1,x∈R}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.为了在运行右面的程序之后输出y=2,输入的x可以是(  ) 
A.0B.2C.0或2D.-1,0或2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设函数f(x)=ex+$\frac{1}{2}$x-a(a∈R)(e为自然对数的底数),若存在x0∈[-1,0],使得f(f(x0))=x0,则实数a的取值范围是[$\frac{1}{2}$(1+ln2),1].

查看答案和解析>>

同步练习册答案