精英家教网 > 高中数学 > 题目详情
17.函数f(x)=$\sqrt{|x+1|-3}$的定义域是{x|x≥2或x≤-4}.

分析 直接利用被开方数方法,列出不等式,求解可得函数的定义域.

解答 解:函数f(x)=$\sqrt{|x+1|-3}$有意义,可得:|x+1|-3≥0,
解得x≥2或x≤-4.
函数的定义域为:{x|x≥2或x≤-4}.

点评 本题考查函数的定义域的求法,绝对值不等式的解法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知cos(α+$\frac{π}{4}$)=$\frac{\sqrt{2}}{4}$,则$\frac{cos2α}{sinα+cosα}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若a>0,b>0,则“a+b>$\frac{1}{a}$+$\frac{1}{b}$”是“ab>1”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.直线l的倾斜角为135°,且过点(1,1),则这条直线被坐标轴所截得的线段长是2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知α角为第二象限角,点P(k,3)在α的终边上,且OP=5,求cosα、tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设P(x0,y0)是圆O:x2+y2=$\frac{2}{3}$外的动点,过P的直线与圆O相切,切点为A,B,设切线PA,PB的斜率分别为k1,k2,且满足k1k2=-$\frac{1}{2}$.
(1)求点P的轨迹方程C;
(2)若动直线l1,l2均与C相切,且l1∥l2,试探究在x轴上是否存在定点Q,点Q到l1,l2的距离之积恒为1?若存在,请求出点Q坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),过焦点垂直于长轴的弦长为1,且焦点与短轴两端点构成等边三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点P在椭圆C上,求P到直线x-2y+3$\sqrt{2}$=0的距离的最大值和最小值,并求出取最大值或最小值时P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.2012年初,甲?乙两外商在湖北各自兴办了一家大型独资企业.2015年初在经济指标对比时发现,这两家企业在2012年和2014年缴纳的地税均相同,其间每年缴纳的地税按各自的规律增长;企业甲年增长数相同,而企业乙年增长率相同.则2015年企业缴纳地税的情况是(  )
A.甲多B.乙多C.甲乙一样多D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数f(x)=ln(1+|x|)-$\frac{1}{1+{x}^{2}}$,则使得f(x)>f(2x-1)成立的取值范围是(  )
A.(-∞,$\frac{1}{3}$)∪(1,+∞)B.($\frac{1}{3}$,1)C.($-\frac{1}{3},\frac{1}{3}$)D.(-∞,-$\frac{1}{3}$,)$∪(\frac{1}{3},+∞)$

查看答案和解析>>

同步练习册答案