精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=﹣x2+bln(x+1)在[0,+∞)上单调递减,则b的取值范围(
A.[0,+∞)
B.[﹣ ,+∞)
C.(﹣∞,0]
D.(﹣∞,﹣ ]

【答案】C
【解析】解:由题意知函数f(x)=﹣x2+bln(x+1)的定义域为(﹣1,+∞);
则f'(x)=﹣2x+
f(x)在[0,+∞)上单调递减,则f'(x)在[0,+∞)上恒有f'(x)≤0;
所以:﹣2x+ ≤0b≤2x(x+1)
令g(x)=2x(x+1),则g(x)在[0,+∞)上的最小值为g(0)=0:
所以b的取值范围为:(﹣∞,0]
故选:C
【考点精析】本题主要考查了利用导数研究函数的单调性的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某高中社团进行社会实践,对岁的人群随机抽取n人进行了一次是否开通“微博”的调查,若开通“微博”的称为“时尚族”,否则称为“非时尚族”,通过调查分别得到如图所示统计表和各年龄段人数频率分布直方图:

完成以下问题:

(Ⅰ)补全频率分布直方图并求的值;

(Ⅱ)从岁年龄段的“时尚族”中采用分层抽样法抽取人参加网络时尚达人大赛,其中选取人作为领队,记选取的名领队中年龄在岁的人数为,求的分布列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先阅读下列题目的证法,再解决后面的问题.

已知a1,a2∈R,且a1+a2=1,求证:a+a.

证明:构造函数f(x)=(x-a1)2+(x-a2)2,则f(x)=2x2-2(a1+a2)x+a+a=2x2-2x+a+a.

因为对一切x∈R,恒有f(x)≥0,

所以Δ=4-8(a+a)≤0,从而得a+a.

(1)若a1,a2,…,an∈R,a1+a2+…+an=1,请由上述结论写出关于a1,a2,…,an的推广式;

(2)参考上述证法,请对你推广的结论加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在圆心角为90°的扇形AOB中,以圆心O作为起点作射线OC,OD,则使∠AOC+∠BOD<45°的概率为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学为调查来自南方和北方的同龄大学生的身高差异,从2016级的年龄在18~19岁之间的大学生中随机抽取了来自南方和北方的大学生各10名,测量他们的身高,量出的身高如下(单位:cm):

南方:158,170,166,169,180,175,171,176,162,163.

北方:183,173,169,163,179,171,157,175,184,166.

(1)根据抽测结果,画出茎叶图,对来自南方和北方的大学生的身高作比较,写出统计结论.

(2)设抽测的10名南方大学生的平均身高为x cm,将10名南方大学生的身高依次输入如图所示的程序框图进行运算,问输出的s大小为多少?并说明s的统计学意义.

(3)为进一步调查身高与生活习惯的关系,现从来自南方的这10名大学生中随机抽取2名身高不低于170 cm的学生,求身高为176 cm的学生被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x﹣1)的图象关于点(1,0)对称,且当x∈(﹣∞,0),f(x)+xf′(x)<0成立.若a=(20.2)f(20.2),b=(ln2)f(ln2),c=(log2 )f(log2 ),则a,b,c的大小关系是(
A.a>b>c
B.b>a>c
C.c>a>b
D.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且满足向量 =(cosA,cosB), =(a,2c﹣b),
(1)求角A的大小;
(2)若a=2 ,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(1,2), =(﹣2,m), = +(t2+1) =﹣k + ,m∈R,k、t为正实数.
(1)若 ,求m的值;
(2)若 ,求m的值;
(3)当m=1时,若 ,求k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi单位:千元与月储蓄yi单位:千元的数据资料,算得=80, =20, =184, =720

求家庭的月储蓄y对月收入x的线性回归方程y=bx+a;

判断变量x与y之间是正相关还是负相关;

若该居民区某家庭月收入为7千元,预测该家庭的月储蓄

查看答案和解析>>

同步练习册答案