精英家教网 > 高中数学 > 题目详情

如图,正方形ABCD所在的平面与△CDE所在的平面相交于CD,AE⊥平面CDE,且AE=3,AB=5.
(1)求证:平面ABCD⊥平面ADE;
(2)求三棱锥E-ABD的体积.

(1)证明:因为AE⊥平面CDE,且CD?平面CDE,所以AE⊥CD,
又正方形ABCD中,CD⊥AD,且AE∩AD=A,AE,AD?平面ADE,
所以CD⊥平面ADE,
又CD?平面ABCD,所以平面ABCD⊥平面ADE;
(2)解:由(1)知,BA⊥面AED,
∴VE-ABD=VB-AED=
因为AE⊥平面CDE,且DE?平面CDE,所以AE⊥DE,
∵ABCD为正方形,∴AD=AB=5
∵AE=3,∴ED=4
∴S△AED==6
∴V==10.
分析:(1)由已知AE⊥平面CDE,可得AE⊥CD,结合正方形ABCD邻边垂直及线面垂直的判定定理可得CD⊥平面ADE,进而由面面垂直的判定定理可得平面ABCD⊥平面ADE;
(2)由(1)知,BA⊥面AED,则VE-ABD=VB-AED=,由此可得三棱锥E-ABD的体积.
点评:本题考查的知识点是平面与平面垂直的判定,直线与平面垂直的判定与性质,考查三棱锥体积的计算,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=
2
,CE=EF=1.
(Ⅰ)求证:AF∥平面BDE;
(Ⅱ)求证:CF⊥平面BDE;
(Ⅲ)求二面角A-BE-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

8、如图把正方形ABCD沿对角线BD折成直二面角,对于下面结论:
①AC⊥BD;
②CD⊥平面ABC;
③AB与BC成60°角;
④AB与平面BCD成45°角.
则其中正确的结论的序号为
①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直,点M在AC上移动,点N在BF上移动,若CM=BN=a(0<a<
2
),则MN的长的最小值为 (  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形ABCD所在平面与等腰三角形EAD所在平面相交于AD,AE⊥平面CDE.
(I)求证:AB⊥平面ADE;
(II)(理)在线段BE上存在点M,使得直线AM与平面EAD所成角的正弦值为
6
3
,试确定点M的位置.
(文)若AD=2,求四棱锥E-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•温州二模)如图,正方形ABCD与正方形CDEF所成的二面角为60°,则直线EC与直线AD所成的角的余弦值为
2
4
2
4

查看答案和解析>>

同步练习册答案