精英家教网 > 高中数学 > 题目详情
17.将矩形ABCD绕边AB旋转一周得到一个圆柱,AB=3,BC=2,圆柱上底面圆心为O,△EFG为下底面圆的一个内接直角三角形,则三棱锥O-EFG体积的最大值是4.

分析 三棱锥O-EFG的高为圆柱的高,即高为ABC,当三棱锥O-EFG体积取最大值时,△EFG的面积最大,当EF为直径,且G在EF的垂直平分线上时,(S△EFGmax=$\frac{1}{2}×4×2=4$,由此能求出三棱锥O-EFG体积的最大值.

解答 解:∵将矩形ABCD绕边AB旋转一周得到一个圆柱,AB=3,BC=2,
圆柱上底面圆心为O,△EFG为下底面圆的一个内接直角三角形,
∴三棱锥O-EFG的高为圆柱的高,即高为ABC,
∴当三棱锥O-EFG体积取最大值时,△EFG的面积最大,
当EF为直径,且G在EF的垂直平分线上时,
(S△EFGmax=$\frac{1}{2}×4×2=4$,
∴三棱锥O-EFG体积的最大值Vmax=$\frac{1}{3}×({S}_{△EFG})_{max}×AB$=$\frac{1}{3}×4×3=4$.
故答案为:4.

点评 本题考查三棱锥的体积的最大值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.若幂函数$f(x)={x^{{m^2}-m-2}}({m∈Z})$在(0,+∞)是单调减函数,则m的取值集合是{0,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.变量x,y满足约束条件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-y-2≤0}\\{y≤1}\end{array}\right.$,则目标函数z=x+3y的最小值为(  )
A.2B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点O(0,0),M(1,0),且圆C:(x-5)2+(y-4)2=r2(r>0)上至少存在一点P,使得|PO|=$\sqrt{2}$|PM|,则r的最小值是5-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在数字1、2、3、4中随机选两个数字,则选中的数字中至少有一个是偶数的概率为$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,某街道居委会拟在EF地段的居民楼正南方向的空白地段AE上建一个活动中心,其中AE=30米.活动中心东西走向,与居民楼平行.从东向西看活动中心的截面图的下部分是长方形ABCD,上部分是以DC为直径的半圆.为了保证居民楼住户的采光要求,活动中心在与半圆相切的太阳光线照射下落在居民楼上的影长GE不超过2.5米,其中该太阳光线与水平线的夹角θ满足$tanθ=\frac{3}{4}$.
(1)若设计AB=18米,AD=6米,问能否保证上述采光要求?
(2)在保证上述采光要求的前提下,如何设计AB与AD的长度,可使得活动中心的截面面积最大?(注:计算中π取3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在{1,3,5}和{2,4}两个集合中各取一个数组成一个两位数,则这个数能被4整除的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{1}{6}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C的两个焦点坐标分别为E(-1,0),F(1,0),离心率为$\frac{{\sqrt{2}}}{2}$.设M,N为椭圆C上关于x轴对称的不同两点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若$\overrightarrow{EM}⊥\overrightarrow{EN}$,试求点M的坐标;
(Ⅲ)若A(x1,0),B(x2,0)为x轴上两点,且x1x2=2,试判断直线MA,NB的交点P是否在椭圆C上,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知圆C:x2+y2-2x+4y=0,则圆C的半径为$\sqrt{5}$,过点(2,1)的直线中,被圆C截得弦长最长的直线方程为3x-y-5=0.

查看答案和解析>>

同步练习册答案