精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)讨论函数的单调性;

(2)当m>0时,若对于区间[1,2]上的任意两个实数x1,x2,且x1<x2,都有,成立,求m的最大值.

【答案】(1)见解析 (2).

【解析】

1)先求导,再分类讨论,根据导数和函数的单调性的关系即可解决,(2)根据题意可得fx2-x22)<fx1-x12,构造函数,再求导,再分离参数,利用导数求出函数的最值即可.

(1)f(x)的定义域是(0,+∞), f′(x)=x+m+=

m≥0时,f′(x)>0, 故m≥0时,f(x)在(0,+∞)递增;

m<0时,方程x2+mx+m=0的判别式为: △=m2-4m>0,

令f′(x)>0,解得:x>

令f′(x)<0,解得:0<x<

故m<0时,f(x)在(,+∞)递增,在(0,)递减;

(2)由(1)知,当m>0时,函数f(x)在(0,+∞)递增,

又[1,2](0,+∞),故f(x)在[1,2]递增;

对任意x1<x2,都有f(x1)<f(x2), 故f(x2)-f(x1)>0,

由题意得:f(x2)-f(x1)<, 整理得:f(x2)-<f(x1)-

令F(x)=f(x)-x2=-x2+mx+mlnx, 则F(x)在[1,2]递减, 故F′(x)=

当x∈[1,2]时,-x2+mx+m≤0恒成立,即m≤

令h(x)=,则h′(x)>0, 故h(x)在[1,2]递增,

故h(x)∈[], 故m≤

实数的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln2x-2aln(ex)+3,x∈[e-1,e2]

(1)当a=1时,求函数f(x)的值域;

(2)若f(x)≤-alnx+4恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)已知函数,其中,求函数的图象恰好经过第一、二、三象限的概率;

(2)某校早上8:10开始上课,假设该校学生小张与小王在早上7:30~8:00之间到校,且每人到该时间段内到校时刻是等可能的,求两人到校时刻相差10分钟以上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若平面直角坐标系内两点PQ满足条件:①PQ都在函数f(x)的图象上;②PQ关于原点对称,则称点对(PQ)是函数f(x)的图象上的一个友好点对”(点对(PQ)与点对(QP)看作同一个友好点对”).已知函数,若此函数的友好点对有且只有一对,则实数的取值范围是_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题在区间上是减函数;

命题q:不等式无解。

若命题“”为真,命题“”为假,求实数m 的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合的元素个数为个且元素为正整数,将集合分成元素个数相同且两两没有公共元素的三个集合,即,其中,若集合中的元素满足,则称集合完美集合例如:“完美集合,此时.若集合,为完美集合”,的所有可能取值之和为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)当m=1时,若方程在区间上有唯一的实数解,求实数a的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程为,倾斜角为的直线过点.

(1)求曲线的直角坐标方程和直线的参数方程;

(2)设,是过点且关于直线对称的两条直线,交于两点,交于, 两点. 求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为,对任意都有,当时,.

1)求

2)证明:上单调递减;

3)解不等式:.

查看答案和解析>>

同步练习册答案