分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解联立方程组求得最优解的坐标,代入目标函数得答案.
解答 解:由约束条件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≤2}\\{y≤2}\end{array}\right.$作出可行域如图,
联立$\left\{\begin{array}{l}{x+y=1}\\{x-y=2}\end{array}\right.$,解得A($\frac{3}{2}$,$-\frac{1}{2}$).
化目标函数z=$\frac{1}{2}$x+y为y=$-\frac{1}{2}x+z$,
由图可知,当直线y=$-\frac{1}{2}x+z$过A时,直线在y轴上的截距最小,z有最小值为$\frac{1}{2}×\frac{3}{2}-\frac{1}{2}=\frac{1}{4}$.
故答案为:$\frac{1}{4}$.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | $\frac{{\sqrt{2}}}{2}$ | C. | 1 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | x+y-1=0 | B. | x-y-1=0 | C. | x+y+1=0 | D. | x-y+1=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com