【题目】如图,在四棱锥中,为等边三角形,,,,.
(Ⅰ)若点为的中点,求证:平面;
(Ⅱ)求四棱锥的体积.
科目:高中数学 来源: 题型:
【题目】已知椭圆:的右焦点为,上顶点为,直线的斜率为,且原点到直线的距离为.
(1)求椭圆的标准方程;
(2)若不经过点的直线:与椭圆交于两点,且与圆相切.试探究的周长是否为定值,若是,求出定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知椭圆的离心率为,右焦点到右准线的距离为3.(椭圆的右准线方程为)
(1)求椭圆的标准方程;
(2)设过的直线与椭圆相交于两点.已知被圆截得的弦长为,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面使用类比推理,得到的结论正确的是( )
A. 直线,若,则.类比推出:向量,,,若∥,∥,则∥.
B. 三角形的面积为,其中,,为三角形的边长,为三角形内切圆的半径,类比推出,可得出四面体的体积为,(,,,分别为四面体的四个面的面积,为四面体内切球的半径)
C. 同一平面内,直线,若,则.类比推出:空间中,直线,若,则.
D. 实数,若方程有实数根,则.类比推出:复数,若方程有实数根,则.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱锥的底面为正三角形,顶点在底面上的射影为底面的中心,,分别是棱,的中点,且,若侧棱,则三棱锥的外接球的表面积是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,已知直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线与曲线交于两点.
(1)求直线l的普通方程和曲线的直角坐标方程;
(2)已知点的极坐标为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在直角坐标系xOy中,圆C的参数方程为为参数,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.
1求圆C的普通方程和直线l的直角坐标方程;
2设M是直线l上任意一点,过M做圆C切线,切点为A、B,求四边形AMBC面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在极坐标系中,O为极点,点在曲线上,直线l过点且与垂直,垂足为P.
(1)当时,求及l的极坐标方程;
(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com