精英家教网 > 高中数学 > 题目详情

设a为实数,函数f(x)=2x2+(x-a)·|x-a|.

(1)若f(0)≥1,求a的取值范围;

(2)求f(x)的最小值;

(3)设函数h (x)=f(x),x∈(a,+∞),直接写出(不需给出步骤)不等式h(x)≥1的解集.

 

【答案】

【解析】解:(1)因为f(0)=-a|-a|≥1,所以-a>0,即a<0.由a2≥1知a≤-1.因此,a的取值范围为(-∞,-1].

(2)记f(x)的最小值为g(a).则有f(x)=2x2+(x-a)|x-a|

(ⅰ)当a≥0时,f(-a)=-2a2,由①②知f(x)≥-2a2,此时g(a)=-2a2.

(ⅱ)当a<0时,f()=a2.若x>a,则由①知f(x)≥a2;

若x≤a,则x+a≤2a<0,由②知f(x)≥2a2>a2.此时g(a)=a2.

综上,得g(a)=

(3)(ⅰ)当a∈(-∞,-]∪[,+∞)时,解集为(a,+∞);

(ⅱ)当a∈[-,)时,解集为[,+∞);

(ⅲ)当a∈(-,-)时,解集

为(a,]∪[,+∞).

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=x3-ax2+(a2-1)x在(-∞,0)和(1,+∞)都是增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=x2-|x-a|+1,x∈R.
(1)若f(x)是偶函数,试求a的值;
(2)在(1)的条件下,求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=2x2+(x-a)|x-a|
(1)求f(a+1);
(2)若a=3,用分段函数的形式表示f(x),并求出f(x)的最小值;
(3)求f(x)的最小值g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=ex-2x+2a,x∈R.求f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=x3+ax2+(a-2)x的导函数是f'(x)是偶函数,则曲线y=f(x)在原点处的切线方程为
y=-2x
y=-2x

查看答案和解析>>

同步练习册答案