精英家教网 > 高中数学 > 题目详情

【题目】两县城相距,现计划在两县城外位于线段上选择一点建造一个两县城的公共垃圾处理厂,已知垃圾处理厂对城市的影响度与所选地点到城市的的距离关系最大,其他因素影响较小暂时不考虑,垃圾处理厂对城和城的总影响度为对城与城的影响度之和. 点到城的距离为,建在处的垃圾处理厂对城和城的总影响度为,统计调查表明:垃圾处理厂对城的影响度与所选地点到城的距离的平方成反比,比例系数2.7;垃圾处理厂对城的影响度与所选地点到城的距离的平方成反比,比例系数为 ;且当垃圾处理厂与城距离为时对城和城的总影响度为0.029.

(1) 表示成的函数;

(2) 讨论⑴中函数的单调性,并判断在线段上是否存在一点,使建在此处的垃圾处理厂对城和城的总影响度最小?若存在,求出该点到城的距离;若不存在,说明理由.

【答案】(1);(2)函数在内单调递减,在内单调递增;在线段AB上存在点符合题意,该点与城的距离.

【解析】

1)先求出垃圾处理厂对城的影响度比例系数,然后根据题意求的函数关系;

(2)应用导数求解.

⑴据题意,

且建在处的垃圾处理厂对城的影响度为

对城的影响度为

因此总影响度

又因为当垃圾处理厂与城距离为

对城和城的总影响度为0.029.

所以

所以

(2) 因为

解得

解得

解得

所以的变化情况如下表:

0

极小值

由表可知,函数在内单调递减,在内单调递增,

时,

故在线段AB上存在点,使得建在此处的垃圾处理厂对城和城的总影响度最小,

该点与城的距离

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】纸张的规格是指纸张制成后,经过修整切边,裁成一定的尺寸.现在我国采用国际标准,规定以等标记来表示纸张的幅面规格.复印纸幅面规格只采用系列和系列,其中系列的幅面规格为:①所有规格的纸张的幅宽(以表示)和长度(以表示)的比例关系都为;②将纸张沿长度方向对开成两等分,便成为规格,纸张沿长度方向对开成两等分,便成为规格,,如此对开至规格.现有纸各一张.纸的宽度为,则纸的面积为________;这张纸的面积之和等于________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班上午有五节课,分別安排语文,数学,英语,物理,化学各一节课.要求语文与化学相邻,数学与物理不相邻,且数学课不排第一节,则不同排课法的种数是

A. 24B. 16C. 8D. 12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2021年我省将实施新高考,新高考“依据统一高考成绩、高中学业水平考试成绩,参考高中学生综合素质评价信息”进行人才选拔。我校2018级高一年级一个学习兴趣小组进行社会实践活动,决定对某商场销售的商品A进行市场销售量调研,通过对该商品一个阶段的调研得知,发现该商品每日的销售量(单位:百件)与销售价格(元/件)近似满足关系式,其中为常数已知销售价格为3元/件时,每日可售出该商品10百件

(1)求函数的解析式;

(2)若该商品A的成本为2元/件,根据调研结果请你试确定该商品销售价格的值,使该商场每日销售该商品所获得的利润(单位:百元)最大。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角ABC所对的边分别为abc,满足(2bc)cosAacosC

1)求角A

2)若b+c5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数fx)=|xm|+|x|mN*,存在实数x使fx)<2成立.

1)求不等式fx)>8的解;

2)若αβ≥1fα+fβ)=4,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2)若在定义域内有两个极值点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为1的正方体中,点是对角线上的动点(点不重合),则下列结论正确的是____.

①存在点,使得平面平面

②存在点,使得平面

的面积不可能等于

④若分别是在平面与平面的正投影的面积,则存在点,使得.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知点H在正方体的对角线上,∠HDA=

(1)求DH所成角的大小;

(2)求DH与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案