精英家教网 > 高中数学 > 题目详情
13.(文)不等式ax2+bx+2>0的解集为($-\frac{1}{2},\frac{1}{3}$),则ab的值为(  )
A.24B.-24C.12D.-12

分析 由题意可知,$-\frac{1}{2},\frac{1}{3}$为方程ax2+bx+2=0的两根,利用根与系数的关系列式求出a,b的值,则答案可求.

解答 解:∵不等式ax2+bx+2>0的解集为($-\frac{1}{2},\frac{1}{3}$),
∴可知$-\frac{1}{2},\frac{1}{3}$为方程ax2+bx+2=0的两根,
则$\left\{\begin{array}{l}{-\frac{1}{2}+\frac{1}{3}=-\frac{b}{a}}\\{-\frac{1}{2}×\frac{1}{3}=\frac{2}{a}}\end{array}\right.$,解得:a=-12,b=-2.
∴ab=24.
故选:A.

点评 本题考查一元二次不等式的解法,考查了一元二次方程的根与系数的关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知数列{an}中,a1=1,an+1=2an+3,数列{bn}中,b1=1,且点(bn+1,bn)在直线y=x-1上.
(Ⅰ)证明:数列{an+3}为等比数列;
(Ⅱ)求数列{an}、{bn}的通项公式;
(Ⅲ)若cn=an+3,求数列{bncn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数$f(x)=\left\{{\begin{array}{l}{\sqrt{x}+3,x≥0}\\{ax+b,x<0}\end{array}}\right.$满足条件:y=f(x)是R上的单调函数且f(a)=-f(b)=4,则f(-1)的值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=DC=1,以D为圆心,DC为半径,作弧和AD交于点E,点P为劣弧CE上的动点,如图所示.
(1)求|$\overrightarrow{DA}+\overrightarrow{DC}$|;
(2)求$\overrightarrow{PA}•\overrightarrow{PB}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.直线l过点M(2,1),且与椭圆$\frac{x^2}{8}+\frac{y^2}{4}=1$交于A,B两点,O是坐标原点.
(Ⅰ)若点M是弦AB的中点,求直线l的方程;
(Ⅱ)若直线l过椭圆的左焦点,求数量积$\overrightarrow{OA}•\overrightarrow{OB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在直角坐标平面xOy内,一条光线从点(2,4)射出,经直线x+y-1=0反射后,经过点(3,2),则反射光线的方程为x-26y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.方程|x|+|y|=1表示的曲线是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.函数f(x)=x•|x-1|+m
(1)设函数g(x)=(2-m)x+3m,若方程f(x)=g(x)在(0,1]上有且仅有一个实根,求实数m的取值范围;
(2)当m>1时,求函数y=f(x)在[0,m]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.数列{an}前n项的和Sn=n2+1,则a3=5,a5=9.

查看答案和解析>>

同步练习册答案