精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系中,椭圆 的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.

(1)求椭圆的方程;

(2)已知点,设是椭圆上关于轴对称的不同两点,直线相交于点,求证:点在椭圆上.

【答案】(1)(2)见解析

【解析】(1)解:由题意知b.

因为离心率e,所以.所以a2.

所以椭圆C的方程为1.

(2)证明:由题意可设MN的坐标分别为(x0y0)(x0y0),则直线PM的方程为yx1

直线QN的方程为yx2.

(证法1)联立①②解得xy,即T.

1可得84.

因为

1,所以点T坐标满足椭圆C的方程,即点T在椭圆C上.

(证法2)T(xy).联立①②解得x0y0.

因为1,所以1.整理得(2y3)2,所以12y84y212y9,即1.

所以点T坐标满足椭圆C的方程,即点T在椭圆C上.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(1)求对称轴是轴,焦点在直线上的抛物线的标准方程;

(2)过抛物线焦点的直线它交于两点,求弦的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列满足.

(1)求

(2)先猜想出的一个通项公式,再用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1的方程为3x+4y﹣12=0.

(1)若直线l2与l1平行,且过点(﹣1,3),求直线l2的方程;

(2)若直线l2与l1垂直,且l2与两坐标轴围成的三角形面积为4,求直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点与点都在椭圆上.

(1)求椭圆的方程;

(2)若的左焦点、左顶点分别为,则是否存在过点且不与轴重合的直线 (记直线与椭圆的交点为),使得点在以线段为直径的圆上;若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】桑基鱼塘是某地一种独具地方特色的农业生产形式,某研究单位打算开发一个桑基鱼塘项目,该项目准备购置一块平方米的矩形地块,中间挖成三个矩形池塘养鱼,挖出的泥土堆在池塘四周形成基围(阴影部分所示)种植桑树,池塘周围的基围宽均为米,如图,设池塘所占总面积为平方米.

Ⅰ)试用表示

Ⅱ)当取何值时,才能使得最大?并求出的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图 1,在直角梯形中, ,且.现以为一边向形外作正方形,然后沿边将正方形翻折,使平面与平面垂直, 的中点,如图 2.

(1)求证: 平面

(2)求证: 平面

(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为 ,离心率为,且过点

)求椭圆的标准方程.

是椭圆上的四个不同的点,两条都不和轴垂直的直线分别过点 ,且这条直线互相垂直,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在女子十米跳台比赛中,已知甲、乙两名选手发挥正常的概率分别为0.90.85,求

(1)甲、乙两名选手发挥均正常的概率;

(2)甲、乙两名选手至多有一名发挥正常的概率;

(3)甲、乙两名选手均出现失误的概率.

查看答案和解析>>

同步练习册答案