【题目】如图,在平面直角坐标系中,椭圆: 的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.
(1)求椭圆的方程;
(2)已知点,设是椭圆上关于轴对称的不同两点,直线与相交于点,求证:点在椭圆上.
科目:高中数学 来源: 题型:
【题目】已知直线l1的方程为3x+4y﹣12=0.
(1)若直线l2与l1平行,且过点(﹣1,3),求直线l2的方程;
(2)若直线l2与l1垂直,且l2与两坐标轴围成的三角形面积为4,求直线l2的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点与点都在椭圆上.
(1)求椭圆的方程;
(2)若的左焦点、左顶点分别为,则是否存在过点且不与轴重合的直线 (记直线与椭圆的交点为),使得点在以线段为直径的圆上;若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】桑基鱼塘是某地一种独具地方特色的农业生产形式,某研究单位打算开发一个桑基鱼塘项目,该项目准备购置一块平方米的矩形地块,中间挖成三个矩形池塘养鱼,挖出的泥土堆在池塘四周形成基围(阴影部分所示)种植桑树,池塘周围的基围宽均为米,如图,设池塘所占总面积为平方米.
(Ⅰ)试用表示.
(Ⅱ)当取何值时,才能使得最大?并求出的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图 1,在直角梯形中, ,且.现以为一边向形外作正方形,然后沿边将正方形翻折,使平面与平面垂直, 为的中点,如图 2.
(1)求证: 平面;
(2)求证: 平面;
(3)求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点分别为, ,离心率为,且过点.
()求椭圆的标准方程.
()、、、是椭圆上的四个不同的点,两条都不和轴垂直的直线和分别过点, ,且这条直线互相垂直,求证: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在女子十米跳台比赛中,已知甲、乙两名选手发挥正常的概率分别为0.9,0.85,求:
(1)甲、乙两名选手发挥均正常的概率;
(2)甲、乙两名选手至多有一名发挥正常的概率;
(3)甲、乙两名选手均出现失误的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com