【题目】在数列 中,已知 ,为常数.
(1)证明: 成等差数列;
(2)设 ,求数列的前n项和 ;
(3)当时,数列 中是否存在不同的三项成等比数列,
且也成等比数列?若存在,求出的值;若不存在,说明理由.
【答案】(1)详见解析,
(2)当,当
(3)不存在
【解析】
试题(1)判定三项成等差数列,基本方法为验证:分别求出,,,满足(2)将条件变形为,从而是以0为首项,公差为的等差数列,即,所以,,当,当(3)由(2)用累加法可求得,假设存在三项成等比数列,且也成等比数列,则,即,,化简得,得.矛盾.
试题解析:(1)因为,
所以,
同理,,, 2分
又因为,, 3分
所以,
故,,成等差数列. 4分
(2)由,得, 5分
令,则,,
所以是以0为首项,公差为的等差数列,
所以, 6分
即,
所以,
所以. 8分
当, 9分
当. 10分
(3)由(2)知,
用累加法可求得,
当时也适合,所以12分
假设存在三项成等比数列,且也成等比数列,
则,即, 14分
因为成等比数列,所以,
所以,
化简得,联立,得.
这与题设矛盾.
故不存在三项成等比数列,且也成等比数列. 16分
科目:高中数学 来源: 题型:
【题目】已知,椭圆C过点,两个焦点为,,E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,直线EF的斜率为,直线l与椭圆C相切于点A,斜率为.
求椭圆C的方程;
求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用一个平面去截直立放置的圆柱,得圆柱的下半部分如图,其中为截面的最低点,为截面的最高点,为线段中点,为截面边界上任意一点,作垂直圆柱底面于点,垂直圆柱于底面于点,垂直圆柱于底面于点,圆柱底面圆心为。已知为底面直径,在以为直径的圆周上,垂直底面,,,,以为原点,为轴正方向,圆柱底面为平面,为轴正方向建立空间直角坐标系,设点。
(1)求点的坐标,并求出与之间满足的关系式;
(2)三视图是解决立体几何问题时的有效工具,将圆柱下半部分在平面上的投影作为主视图,在平面上的投影作为俯视图;在方框中作出主视图,并说明理由;再求出左视图所围区域的面积;
(3)判断截面的边界是什么曲线,并证明.再指出截面的面积(不需要证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的一个焦点是,且
(1)求双曲线的方程
(2)设经过焦点的直线的一个法向量为,当直线与双曲线的右支相交于不同的两点时,求实数的取值范围
(3)设(2)中直线与双曲线的右支相交于两点,问是否存在实数,使得为锐角?若存在,请求出的范围;若不存在,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着计算机的出现,图标被赋予了新的含义,又有了新的用武之地.在计算机应用领域,图标成了具有明确指代含义的计算机图形.如图所示的图标是一种被称之为“黑白太阳”的图标,该图标共分为3部分.第一部分为外部的八个全等的矩形,每一个矩形的长为3、宽为1;第二部分为圆环部分,大圆半径为3,小圆半径为2;第三部分为圆环内部的白色区域.在整个“黑白太阳”图标中随机取一点,则此点取自图标第三部分的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是______(将所有正确的序号都写出)
(1)直线及平面,若且,则;
(2)不同平面,若存在,则,其中是直线,且;
(3)已知,则;
(4)平面,平面,则.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知的内角、、的对边分别为、、,为内一点,若分别满足下列四个条件:
①;
②;
③;
④;
则点分别为的( )
A.外心、内心、垂心、重心B.内心、外心、垂心、重心
C.垂心、内心、重心、外心D.内心、垂心、外心、重心
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com