精英家教网 > 高中数学 > 题目详情
设圆的方程为x2+y2-4x-5=0,
(1)求该圆的圆心坐标及半径;
(2)若此圆的一条弦AB的中点为P(3,1),求直线AB的方程.
分析:(1)将圆配方为标准方程,即可求得圆的圆心坐标及半径;
(2)利用CP⊥AB,求出AB的斜率,进而可求直线AB的方程.
解答:解:(1)将x2+y2-4x-5=0配方得:(x-2)2+y2=9
∴圆心坐标为C(2.0),半经为r=3.…(6分)
(2)设直线AB的斜率为k.
由圆的知识可知:CP⊥AB,∴kCP•k=-1
又Kcp=
1-0
3-2
=1,∴k=-1.
∴直线AB的方程为y-1=-1(x-3)
即:x+y-4=0…(12分)
点评:本题考查圆的方程,考查圆的性质,考查计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设圆心为C1的方程为(x-5)2+(y-3)2=9,圆心为C2的方程为x2+y2-4x+2y-9=0,则两圆的圆心距等于(  )
A、5
B、25
C、10
D、2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

设圆过坐标原点,且与直线y=1和y轴均相切,则圆的方程为
x2-2x+y2=0或x2+2x+y2=0
x2-2x+y2=0或x2+2x+y2=0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•韶关一模)设抛物线C的方程为x2=4y,M(x0,y0)为直线l:y=-m(m>0)上任意一点,过点M作抛物线C的两条切线MA,MB,切点分别为A,B.
(1)当M的坐标为(0,-1)时,求过M,A,B三点的圆的方程,并判断直线l与此圆的位置关系;
(2)求证:直线AB恒过定点(0,m).

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线C的方程为x2=4y,M为直线l:y=-m(m>0)上任意一点,过点M作抛物线C的两条切线MA,MB,切点分别为A,B.
(Ⅰ)当M的坐标为(0,-l)时,求过M,A,B三点的圆的标准方程,并判断直线l与此圆的位置关系;
(Ⅱ)当m变化时,试探究直线l上是否存在点M,使MA⊥MB?若存在,有几个这样的点,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的方程为x2+(y-4)2=4,点O是坐标原点.直线l:y=kx与圆C交于M,N两点.

(1)求k的取值范围.

(2)设Q(m,n)是线段MN上的点,且=+.请将n表示为m的函数.

查看答案和解析>>

同步练习册答案