精英家教网 > 高中数学 > 题目详情

已知数列{an}的前n项和Sn=n2an(n≥2),a1=1试猜想此数列的通项公式________.


分析:数列{an}中,前n项和为Sn,由a1=1,Sn=n2an(n∈N*),可得s1;由s2可得a2的值,从而得s2;同理可得s3,s4;可以猜想:sn=,最后结合Sn=n2an(n≥2)即可猜想此数列的通项公式,本题不需要证明.
解答:在数列{an}中,前n项和为Sn,且a1=1,Sn=n2an(n∈N*),
∴s1=a1=1=;s2=1+a2=4a2,∴a2=,s2==
s3=1++a3=9a3,∴a3=,s3==;s4=1+++a4=16a4,∴a4=,s4==
…于是猜想:sn=
∴猜想此数列的通项公式an=
故答案为:
点评:本题考查了用递推公式,通过归纳推理,求数列的前n项和为Sn,需要有一定的计算能力和归纳猜想能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案