精英家教网 > 高中数学 > 题目详情

【题目】口袋中装有2个白球和nn≥2,n N*)个红球.每次从袋中摸出2个球(每次摸球后把这2个球放回口袋中),若摸出的2个球颜色相同则为中奖,否则为不中奖.
(I)用含n的代数式表示1次摸球中奖的概率;
(Ⅱ)若n=3,求3次摸球中恰有1次中奖的概率;
(III)记3次摸球中恰有1次中奖的概率为fp),当fp)取得最大值时,求n的值.

【答案】解:(I)设“1次摸球中奖”为事件A,则PA)=

(II)由(I)得,若n=3,则1次摸球中奖的概率为p= = =

所以3次摸球中,恰有1次中奖的概率为P3(1)=

(III)设“1次摸球中奖”的概率为p

则3次摸球中,恰有1次中奖的概率为

fp)=C p(1-p2 =3p3-6p2+3p(0<p<1),

因为f'(p)=9p2-12p+3=3(p-1)(3p-1),

所以,当p∈(0, )时,fp)单调递增;当p∈( ,1)时,fp)单调递减,

所以,当p= 时,fp)取得最大值.

,解得n=2,n=1(舍去).

所以,当fp)取得最大值时,n的值为2.


【解析】(I)根据题意结合排列组合再利用概率的定义求出即可。(II)利用n次独立重复试验中恰好发生k次的概率求出结果。(III)根据题意求出概率fp)的解析式,对其求导利用导函数的性质得到原函数的单调性进而求出当fp)取得最大值时,n的值为2。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在无穷数列中, ,对于任意,都有 .设,记使得成立的n的最大值为

Ⅰ)设数列{an}1357,写出b1b2b3的值;

Ⅱ)若{an}为等比数列,且a2=2,求b1+b2+b3+…+b50的值;

Ⅲ)若{bn}为等差数列,求出所有可能的数列{an}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在ABC中,∠ABC90°ABBC1PABC内一点,∠BPC90°.

(1)PB,求PA

(2)若∠APB150°,求tanPBA.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ﹣k( +lnx),若x=2是函数f(x)的唯一一个极值点,则实数k的取值范围为(
A.(﹣∞,e]
B.[0,e]
C.(﹣∞,e)
D.[0,e)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用 (基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费是与上一年度车辆发生道路交通安全违法行为或者道路交通事故的情况相联系的.交强险第二年价格计算公式具体如下:交强险最终保费基准保费浮动比率).发生交通事故的次数越多,出险次数的就越多,费率也就越髙,具体浮动情况如下表:

某机构为了研究某一品牌普通6座以下私家车的投保情况,为此搜集并整理了100辆这一品牌普通6座以下私家车一年内的出险次数,得到下面的柱状图:

已知小明家里有一辆该品牌普通6座以下私家车且需要续保,续保费用为.

1为事件的估计值;

2的平均估计值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2eax
(Ⅰ)当a<0时,讨论函数f(x)的单调性;
(Ⅱ)在(1)条件下,求函数f(x)在区间[0,1]上的最大值;
(Ⅲ)设函数g(x)=2ex ,求证:当a=1,对x∈(0,1),g(x)﹣xf(x)>2恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答题
(Ⅰ)已知函数f(x)=|x+1|+|x﹣a|(a>0),若不等式f(x)≥5的解集为{x|x≤﹣2或x≥3},求a的值;
(Ⅱ) 已知实数a,b,c∈R+ , 且a+b+c=m,求证: + +

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)判断并证明函数的奇偶性;

(2)判断当时函数的单调性,并用定义证明;

(3)若定义域为,解不等式.

【答案】(1)奇函数(2)增函数(3)

【解析】试题分析:1)判断与证明函数的奇偶性,首先要确定函数的定义域是否关于原点对称,再判断f(-x)f(x)的关系,如果对定义域上的任意x,都满足f(-x)=f(x)就是偶函数,如果f(-x)=-f(x)就是奇函数,否则是非奇非偶函数。2)利函数单调性定义证明单调性,按假设,作差,化简,判断,下结论五个步骤。(3)由(1)(2)奇函数在(-11)为单调函数,

原不等式变形为f(2x-1)<-f(x),f(2x-1)<f(-x),再由函数的单调性及定义(-1,1)求解得x范围。

试题解析:1)函数为奇函数.证明如下:

定义域为

为奇函数

2)函数在(-11)为单调函数.证明如下:

任取,则

在(-11)上为增函数

3由(1)、(2)可得

解得:

所以,原不等式的解集为

点睛

(1)奇偶性:判断与证明函数的奇偶性,首先要确定函数的定义域是否关于原点对称,再判断f(-x)f(x)的关系,如果对定义域上的任意x,都满足f(-x)=f(x)就是偶函数,如果f(-x)=-f(x)就是奇函数,否则是非奇非偶函数。

(2)单调性:利函数单调性定义证明单调性,按假设,作差,化简,定号,下结论五个步骤。

型】解答
束】
22

【题目】已知函数.

(1)若的定义域和值域均是,求实数的值;

(2)若在区间上是减函数,且对任意的,都有,求实数的取值范围;

(3)若,且对任意的,都存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题: ①x0∈R,ln(x02+1)<0;
x>2,x2>2x
α,β∈R,sin(α﹣β)=sin α﹣sin β;
④若q是¬p成立的必要不充分条件,则¬q是p成立的充分不必要条件.
其中真命题的个数为(
A.1
B.2
C.3
D.4

查看答案和解析>>

同步练习册答案