精英家教网 > 高中数学 > 题目详情

【题目】某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.

(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?
(2)在(1)的条件下,该县决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.

【答案】
(1)解:第3,4,5组中的人数分别为0.06×5×100=30,0.04×5×100=20,0.02×5×100=10.

从第3,4,5组中用分层抽样的方法抽取6名志愿者,应从第3,4,5组各抽取人数为 =1;


(2)解:设“第4组至少有一名志愿者被抽中”为事件A,则P(A)= =
【解析】(1)先分别求出这3组的人数,再利用分层抽样的方法即可得出答案;(2)利用古典概型的概率计算公式、互斥事件及相互独立事件的概率计算公式即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知圆 和圆
(1)若直线l1过点A(2,0),且与圆C1相切,求直线l1的方程;
(2)若直线l2过点B(4,0),且被圆C2截得的弦长为 ,求直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,半径为1,圆心角为 的圆弧 上有一点C.
(1)若C为圆弧AB的中点,点D在线段OA上运动,求| + |的最小值;
(2)若D,E分别为线段OA,OB的中点,当C在圆弧 上运动时,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=m(sinx+cosx)﹣4sinxcosx,x∈[0, ],m∈R.
(1)设t=sinx+cosx,x∈[0, ],将f(x)表示为关于t的函数关系式g(t),并求出t的取值范围;
(2)若关于x的不等式f(x)≥0对所有的x∈[0, ]恒成立,求实数m的取值范围;
(3)若关于x的方程f(x)﹣2m+4=0在[0, ]上有实数根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ﹣1+lnx,若存在x0>0,使得f(x0)≤0有解,则实数a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cos ,sin ), =(cos ,﹣sin ),函数f(x)= ﹣m| + |+1,x∈[﹣ ],m∈R.
(1)当m=0时,求f( )的值;
(2)若f(x)的最小值为﹣1,求实数m的值;
(3)是否存在实数m,使函数g(x)=f(x)+ m2 , x∈[﹣ ]有四个不同的零点?若存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求值:
(1) +log318﹣log36+
(2)A是△ABC的一个内角, ,求cosA﹣sinA.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,P,Q分别是BC和CD的中点.
(1)若AB=2,AD=1,∠BAD=60°,求 及cos∠BAC的余弦值;
(2)若 + ,求λ+μ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log2x,g(x)=x2+2x,数列{an}的前n项和记为Sn , bn为数列{bn}的通项,n∈N* . 点(bn , n)和(n,Sn)分别在函数f(x)和g(x)的图象上.
(1)求数列{an}和{bn}的通项公式;
(2)令Cn= ,求数列{Cn}的前n项和Tn

查看答案和解析>>

同步练习册答案