已知函数的定义域为,当时,,且对于任意的,恒有成立.
(1)求;
(2)证明:函数在上单调递增;
(3)当时,
①解不等式;
②求函数在上的值域.
(1) (2) 设,则, ∴函数在上单调递增(3) ①②
【解析】
试题分析:(1)∵对于任意的恒有成立.
∴令,得:2分
(2)设,则 4分
7分
∴函数在上单调递增 8分
(3)①∵对于任意的恒有成立.
∴
又∵,
∴等价于, 10分
解得: 12分
∴所求不等式的解集为
②
由①得:
由(2)得:函数在上单调递增
故函数在上单调递增 13分
, 15分
∴函数在上的值域为 16分
考点:抽象函数单调性及值域
点评:第一问抽象函数求值关键是对自变量合理赋值,第二问判定其单调性需通过定义:在下比较的大小关系,第三问解不等式,求函数值域都需要结合单调性将抽象函数转化为具体函数,利用单调性找到最值点的位置
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
π | 2 |
查看答案和解析>>
科目:高中数学 来源:2013-2014学年浙江省杭州市七校高三上学期期中联考理科数学试卷(解析版) 题型:解答题
已知函数的定义域为,
(1)求;
(2)若,且是的真子集,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014届辽宁朝阳高二下学期期中考试理科数学试卷(解析版) 题型:选择题
已知函数的定义域为,部分对应值如下表。的导函数的图像如图所示。
0 |
|||||
下列关于函数的命题:
①函数在上是减函数;②如果当时,最大值是,那么的最大值为;③函数有个零点,则;④已知是的一个单调递减区间,则的最大值为。
其中真命题的个数是( )
A、4个 B、3个 C、2个 D、1个
查看答案和解析>>
科目:高中数学 来源:2010-2011学年海南省海口市高三高考调研考试理科数学 题型:选择题
已知函数的定义域为,且,为的导函数,函数的图象如图所示.若正数,满足,则的取值范围是
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com