精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)=2ax2﹣2bx﹣a+b(a,b∈R,a>0),g(x)=2ax﹣2b
(1)若时,求f(sinθ)的最大值;
(2)设a>0时,若对任意θ∈R,都有|f(sinθ)|≤1恒成立,且g(sinθ)的最大值为2,求f(x)的表达式.

【答案】解:(1)令sinθ=t∈[0,1],问题等价于求f(t)=2at2﹣2bt﹣a+b在t∈[0,1]的最大值,
∵a>0,抛物线开口向上,二次函数的对称轴t=
由二次函数区间的最值可得
(2)令sinθ=t∈[﹣1,1],则|f(t)|≤1可推得|f(0)|≤1,|f(1)|≤1,|f(﹣1)|≤1,
∵a>0,∴g(sinθ)max=g(1)=2,而g(1)=2a﹣2b=2
而f(0)=b﹣a=﹣1而t∈[﹣1,1]时,|f(t)|≤1,即﹣1≤f(t)≤1,
结合f(0)=﹣1可知二次函数的顶点坐标为(0,﹣1)
∴b=0,a=1,∴f(x)=2x2﹣1.
【解析】(1)令sinθ=t∈[0,1],问题等价于求f(t)=2at2﹣2bt﹣a+b在t∈[0,1]的最大值,由二次函数区间的最值可得;
(2)令sinθ=t∈[﹣1,1],由恒成立和最大值可得可得二次函数的顶点坐标为(0,﹣1),进而可得ab的值,可得解析式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且).

(1)求的通项公式;

(2)设 是数列的前项和,求正整数,使得对任意均有恒成立;

(3)设 是数列的前项和,若对任意均有恒成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,设角A,B,C的对边分别为a,b,c,向量=(cosA,sinA),=(﹣sinA,cosA),若=1.
(1)求角A的大小;
(2)若b=4 , 且c=a,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数则方程g[f(x)]﹣a=0(a为正实数)的实数根最多有(  )个.
A.6个
B.4个
C.7个
D.8个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点O(0,0),A(3,0),动点P到定点O距离与到定点A的距离的比值是
(Ⅰ)求动点P的轨迹方程,并说明方程表示的曲线;
(Ⅱ)当λ=4时,记动点P的轨迹为曲线D.F,G是曲线D上不同的两点,对于定点Q(﹣3,0),有|QF||QG|=4.试问无论F,G两点的位置怎样,直线FG能恒和一个定圆相切吗?若能,求出这个定圆的方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(3+x)+ln(3﹣x).
(Ⅰ)求函数y=f(x)的定义域;
(Ⅱ)判断函数y=f(x)的奇偶性;
(Ⅲ)若f(2m﹣1)<f(m),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学将100名高二文科生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用AB两种不同的教学方式分别在甲、乙两个班进行教改实验.为了了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如下图).记成绩不低于90分者为“成绩优秀”.

(Ⅰ)根据频率分布直方图填写下面2×2列联表;

甲班(A方式)

乙班(B方式)

总计

成绩优秀

成绩不优秀

总计

(Ⅱ)判断能否在犯错误的概率不超过0.05的前提下认为:“成绩优秀”与教学方式有关?

附:.

P(K2k)

0.25

0.15

0.10

0.05

0.025

k

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱中,底面四边形是直角梯形,其中.

(Ⅰ)求证:直线平面

(Ⅱ)试求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过原点的动直线与圆相交于不同的两点 .

(1)求圆的圆心坐标;

(2)求线段的中点的轨迹的方程;

(3)是否存在实数,使得直线与曲线只有一个交点?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案