精英家教网 > 高中数学 > 题目详情

【题目】为了让贫困地区的孩子们过一个温暖的冬天,某校阳光志愿者社团组织“这个冬天不再冷”冬衣募捐活动,共有50名志愿者参与.志愿者的工作内容有两项:①到各班做宣传,倡议同学们积极捐献冬衣;②整理、打包募捐上来的衣物.每位志愿者根据自身实际情况,只参与其中的某一项工作.相关统计数据如下表所示:

(1)如果用分层抽样的方法从参与两项工作的志愿者中抽取5人,再从这5人中选2人,那么“至少有1人是参与班级宣传的志愿者”的概率是多少?

(2)若参与班级宣传的志愿者中有12名男生,8名女生,从中选出2名志愿者,用表示所选志愿者中的女生人数,写出随机变量的分布列及数学期望.

【答案】;(

【解析】试题分析:()由分层抽样方法得参与到班级宣传的志愿者被抽中的有2人,参与整理、打包衣物者被抽中的有3人,由此能求出至少有1人是参与班级宣传的志愿者的概率.

)女生志愿者人数X=012,分别求出其概率,由此能求出随机变量X的分布列及数学期望.

【解答】()解:用分层抽样方法,每个人抽中的概率是

参与到班级宣传的志愿者被抽中的有20×=2人,

参与整理、打包衣物者被抽中的有30×=3人,

至少有1人是参与班级宣传的志愿者的概率为:P=1﹣=

)解:女生志愿者人数X=012

∴X的分布列为:

∴X的数学期望EX==

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在两种设备上加工,生产一件甲产品需用设备2小时, 设备6小时;生产一件乙产品需用设备3小时, 设备1小时. 两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( )

A. 320千元 B. 360千元 C. 400千元 D. 440千元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某区“创文明城区”(简称“创城”)活动中,教委对本区四所高中学校按各校人数分层抽样,随机抽查了100人,将调查情况进行整理后制成下表:

学校

抽查人数

50

15

10

25

“创城”活动中参与的人数

40

10

9

15

(注:参与率是指:一所学校“创城”活动中参与的人数与被抽查人数的比值)假设每名高中学生是否参与”创城”活动是相互独立的.

(1)若该区共2000名高中学生,估计学校参与“创城”活动的人数;

(2)在随机抽查的100名高中学生中,随机抽取1名学生,求恰好该生没有参与“创城”活动的概率;

(3)在上表中从两校没有参与“创城”活动的同学中随机抽取2人,求恰好两校各有1人没有参与“创城”活动的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 是等边三角形, 的中点,四边形为直角梯形, .

1)求证:平面平面

2)求四棱锥的体积;

3)在棱上是否存在点,使得平面?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

Ⅰ)求曲线在点处的切线方程;

Ⅱ)求的单调区间;

Ⅲ)若对于任意,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为.在甲出发后,乙从A乘缆车到B,在B处停留后,再从B匀速步行到C.假设缆车匀速直线运动的速度为,山路AC长为,经测量,.当乙出发________分钟时,乙在缆车上与甲的距离最短.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设正项数列的前项和为,且满足:

(Ⅰ)求数列的通项公式;

(Ⅱ)若正项等比数列满足,且,数列的前项和为,若对任意,均有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某房地产开发商投资81万元建一座写字楼,第一年装修维护费为1万元,以后每年增加2万元,把写字楼出租,每年收入租金30万元.

1)若扣除投资和各种装修维护费,则从第几年开始获取纯利润?

2)若干年后开发商为了投资其他项目,有两种处理方案:①纯利润总和最大时,以10万元出售该楼;②年平均利润最大时以46万元出售该楼,问哪种方案更优?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在直角梯形中, ,将沿折起至,使二面角为直角.

(1)求证:平面平面

(2)若点满足, ,当二面角为45°时,求的值.

查看答案和解析>>

同步练习册答案