精英家教网 > 高中数学 > 题目详情
设集合A=B={(x,y)|x∈R,y∈R},从A到B的映射f:(x,y)→(x+y,x-y)在映射f下,A中的元素(4,2)对应的B中元素为
 
考点:映射
专题:函数的性质及应用
分析:根据f::(x,y)→(x+y,x-y),可得A中元素(x,y)在B中的对应元素为(x+y,x-y),将x=4,y=2代入,可得A中元素(4,2)在B中的对应元素.
解答: 解:∵f:(x,y)→(x+y,x-y)
∴A中元素(x,y)在B中的对应元素为(x+y,x-y),
A中元素(4,2)在B中的对应元素为(6,2),
故答案为:(6,2)
点评:本题考查的知识点是映射,正确理解映射中A中元素与B中元素的对应关系法则,是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知整数n≥3,集合M={1,2,3,…,n}的所有含有3个元素的子集记为A1,A2,A3,…,A 
C
3
n
,设A1,A2,A3,…,A 
C
3
n
中所有元素之和为Sn
(Ⅰ)求S3,S4,S5,并求出Sn
(Ⅱ)证明:S3+S4+S…+Sn=6Cn+25

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)是R上的奇函数,当x>0时,f(x)=-x2+2x+a(a∈R).
(1)求函数f(x)在(-∞,0)上的单调减区间;
(2)是否存在实数a,使得函数f(x)在[-1,1]上单调递增?若存在,求出a的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列式子:
1+
1
22
3
2
,1+
1
22
+
1
32
5
3
,1+
1
22
+
1
32
+
1
42
7
4
,…
据以上式子可以猜想:1+
1
22
+
1
32
+
1
42
+…+
1
20152
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A1B1C1D1中,下列各式中运算的结果为向量
AC1
的共有(  )
①(
AB
+
BC
)+
CC1
;②(
AB
+
AD
)+
AA1
;③(
AB
+
BD
)+
DC1
;④(
AA1
+
A1B1
)+
A1D1
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥P-ABC,PA⊥面ABC,∠ABC=90°,PA=2,AB=
3
,BC=1,则该三棱锥的外接球体积为(  )
A、8π
B、
8
2
3
π
C、
4
3
3
π
D、12
3
π

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若sinA:sinB;sinC=4:3:6,则cosC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列叙述中正确的是(  )
A、若 p∧(¬q)为假,则一定是p假q真
B、命题“?x∈R,x2≥0”的否定是“?x∈R,x2≥0”
C、若a,b,c∈R,则“ab2>cb2”的充分不必要条件是“a>c”
D、α是一平面,a,b是两条不同的直线,若 a⊥α,b⊥α,则a∥b

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线l1:x+y-2=0与直线l2:ax-y+7=0平行,则a=
 

查看答案和解析>>

同步练习册答案