精英家教网 > 高中数学 > 题目详情

【题目】已知直线lmxy=1,若直线l与直线x+mm﹣1)y=2垂直,则m的值为_____,动直线lmxy=1被圆Cx2﹣2x+y2﹣8=0截得的最短弦长为_____

【答案】02

【解析】

直接由直线垂直与系数的关系列式求得m值;化圆的方程为标准方程,作出图形,数形结合求解.

由题意,直线mx﹣y=1与直线x+m(m﹣1)y=2垂直,

所以m×1+(﹣1)×m(m﹣1)=0,解得m=0或m=2;

动直线l:mx﹣y=1过定点(0,﹣1),

圆C:x2﹣2x+y2﹣8=0化为(x﹣1)2+y2=9,

圆心(1,0)到直线mx﹣y﹣1=0的距离的最大值为

所以动直线l:mx﹣y=1被圆C:x2﹣2x+y2﹣8=0截得的最短弦长为

故答案为:0或2;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)在如图所示给定的直角坐标系内画出f(x)的图象

(2)写出f(x)的单调递增区间

(3)由图象指出当x取什么值时f(x)有最值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)若曲线上一点的极坐标为,且过点,求的普通方程和的直角坐标方程;

(2)设点的交点为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某理财公司有两种理财产品.这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立):

产品

产品(其中

(Ⅰ)已知甲、乙两人分别选择了产品和产品进行投资,如果一年后他们中至少有一人获利的概率大于,求的取值范围;

(Ⅱ)丙要将家中闲置的10万元钱进行投资,以一年后投资收益的期望值为决策依据,在产品和产品之中选其一,应选用哪个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地通过市场调查得到西红柿种植成本(单位:元/千克)与上市时间(单位:天)的数据如下表:

时间

种植成本

1)根据上表数据,发现二次函数能够比较准确描述的变化关系,请求出函数的解析式;

2)利用选取的函数,求西红柿最低种植成本及此时的上市天数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:+=1(a>b>0)的离心率为,直线l:x+2y=4与椭圆有且只有一个交点T.

(I)求椭圆C的方程和点T的坐标;

)O为坐标原点,与OT平行的直线l′与椭圆C交于不同的两点A,B,直线l′与直线l交于点P,试判断是否为定值,若是请求出定值,若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,平面平面,四边形和四边形都是正方形,且边长为的中点.

(1)求证:直线平面

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在空间几何体ABCDFE中,底面是边长为2的正方形,.

(1)求证:AC//平面DEF;

(2)已知,若在平面上存在点,使得平面,试确定点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—5:不等式选讲

已知函数

1)当时,解不等式

2)若存在实数,使得不等式成立,求实的取值范围.

查看答案和解析>>

同步练习册答案