(本题满分16分)
已知数列是各项均不为的等差数列,公差为,为其前项和,且满足,.数列满足,为数列的前n项和.
(1)求、和;
(2)若对任意的,不等式恒成立,求实数的取值范围;
(3)是否存在正整数,使得成等比数列?若存在,求出所有
的值;若不存在,请说明理由.
解:(1)(法一)在中,令,,
得 即 --------------------2分
解得,, .--------3分
,
. --------------------5分
(法二)是等差数列, . ------2分
由,得 , 又,,则. ------3分
(求法同法一)
(2)①当为偶数时,要使不等式恒成立,即需不等式恒成立. ---------------------------------6分
,等号在时取得. 此时 需满足. ------7分
②当为奇数时,要使不等式恒成立,
即需不等式恒成立. -----------------------8分
是随的增大而增大, 时取得最小值.
此时 需满足. -----------------------------------------9分
综合①、②可得的取值范围是. ---------------------------------------------10分
(3),
若成等比数列,则,即.…12分
(法一)由, 可得,
即, ------------------------14分
.
又,且,所以,此时.
因此,当且仅当, 时,数列中的成等比数列.-------- 16分
(法二)因为,故,即,
,(以下同上). --- -----------------14分
科目:高中数学 来源: 题型:
a1+2a2+3a3+…+nan |
1+2+3+…+n |
n(n+1)(2n+1) |
6 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分.
已知函数(,、是常数,且),对定义域内任意(、且),恒有成立.
(1)求函数的解析式,并写出函数的定义域;
(2)求的取值范围,使得.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分16分)已知数列的前项和为,且.数列中,,
.(1)求数列的通项公式;(2)若存在常数使数列是等比数列,求数列的通项公式;(3)求证:①;②.
查看答案和解析>>
科目:高中数学 来源:江苏省私立无锡光华学校2009—2010学年高二第二学期期末考试 题型:解答题
本题满分16分)已知圆内接四边形ABCD的边长分别为AB = 2,BC = 6,CD = DA = 4;求四边形ABCD的面积.
查看答案和解析>>
科目:高中数学 来源:2010年上海市徐汇区高三第二次模拟考试数学卷(文) 题型:解答题
(本题满分16分;第(1)小题5分,第(2)小题5分,第三小题6分)
已知函数
(1)判断并证明在上的单调性;
(2)若存在,使,则称为函数的不动点,现已知该函数有且仅有一个不动点,求的值;
(3)若在上恒成立 , 求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com