精英家教网 > 高中数学 > 题目详情
椭圆:的左顶点为,直线交椭圆两点(下),动点和定点都在椭圆上.
(1)求椭圆方程及四边形的面积.
(2)若四边形为梯形,求点的坐标.
(3)若为实数,,求的取值范围.
(1).(2). (3).

试题分析:(1)将D的坐标代入即得,从而得椭圆的方程为.
代入.由此可得的面积,二者相加即得四边形的面积.(2)在椭圆中AP不可能平行BC,四边形ABCP又为梯形,所以必有,由此可得直线PC的方程,从而求得点P的坐标.(3)设,由得则间的关系,即,又因为点P在椭圆上,所以,由此可得,这样利用三角函数的范围便可求得的范围.
(1)因为点D在椭圆上,所以
所以椭圆的方程为.
易得:的面积为.
直线BD的方程为,即.所以点A到BD的距离为.
所以.
(2)四边形ABCP为梯形,所以,直线PC的方程为:
.代入椭圆方程得(舍),
代入.所以点P的坐标为.
(3)设,则,即
因为点P在椭圆上,所以
由此可得
所以.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)(2011•重庆)如图,椭圆的中心为原点0,离心率e=,一条准线的方程是x=2

(Ⅰ)求椭圆的标准方程;
(Ⅱ)设动点P满足:=+2,其中M、N是椭圆上的点,直线OM与ON的斜率之积为﹣
问:是否存在定点F,使得|PF|与点P到直线l:x=2的距离之比为定值;若存在,求F的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设e是椭圆=1的离心率,且e∈(,1),则实数k的取值范围是(  )
A.(0,3)B.(3,)
C.(0,3)∪(,+∞)D.(0,2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知对,直线与椭圆恒有公共点,则实数的取值范围是(  )
A.(0, 1)B.(0,5)C.[1,5)D.[1,5)∪(5,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点且离心率为
(1)求椭圆的方程;
(2)若斜率为的直线两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点的坐标分别为.直线相交于点,且它们的斜率之积是,记动点的轨迹为曲线.
(1)求曲线的方程;
(2)设是曲线上的动点,直线分别交直线于点,线段的中点为,求直线与直线的斜率之积的取值范围;
(3)在(2)的条件下,记直线的交点为,试探究点与曲线的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知直线 和椭圆,椭圆C的离心率为,连结椭圆的四个顶点形成四边形的面积为.
(1)求椭圆C的方程;
(2)若直线与椭圆C有两个不同的交点,求实数m的取值范围;
(3)当时,设直线与y轴的交点为P,M为椭圆C上的动点,求线段PM长度的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知动圆:,则圆心的轨迹是(   )
A.直线  B.圆 C.抛物线的一部分 D.椭圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知圆E:,点,P是圆E上任意一点.线段PF的垂直平分线和半径PE相交于Q.
(1)求动点Q的轨迹的方程;
(2)已知A,B,C是轨迹的三个动点,A与B关于原点对称,且,问△ABC的面积是否存在最小值?若存在,求出此时点C的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案