精英家教网 > 高中数学 > 题目详情

【题目】平面上两定点,动点为常数).

(Ⅰ)说明动点的轨迹(不需要求出轨迹方程);

(Ⅱ)当时,动点的轨迹为曲线,过的直线交于两点,已知点,证明:

【答案】(Ⅰ)答案见解析;(Ⅱ)证明见解析.

【解析】

1)对进行分类,再利用线段和椭圆的概念即可得到结果;

2)由题意可知,可得动点的轨迹方程为,当轴重合和当轴垂直时时,易得结论成立;当轴不重合也不垂直时,设直线的方程为,联立椭圆方程,得到韦达定理,再直线的斜率之和为0,即可证明结果.

(Ⅰ)由题意:当时,动点不表示任何图形;

时,动点的轨迹是线段;

时,动点的轨迹是椭圆.

(Ⅱ)当时,动点的轨迹方程为:

轴重合时,

轴垂直时,直线恰好平分

轴不重合也不垂直时,

设直线的方程为

代入椭圆方程可得

直线的斜率之和为

因为

所以,故直线的倾斜角互补

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),将曲线上各点纵坐标伸长到原来的2倍(横坐标不变)得到曲线,以坐标原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.

1)写出的极坐标方程与直线的直角坐标方程;

2)曲线上是否存在不同的两点(以上两点坐标均为极坐标,),使点的距离都为3?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象与轴相切.

1)求的值.

2)求证:

3)若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】棱台的三视图与直观图如图所示.

(1)求证:平面平面

(2)在线段上是否存在一点,使与平面所成的角的正弦值为?若存在,指出点的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是自然对数的底数).证明:

1存在唯一的极值点;

2有且仅有两个实根,且两个实根互为相反数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且曲线处的切线平行于直线

1)求a的值;

2)求函数的单调区间;

3)已知函数图象上不同的两点,试比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 ).

1)若展开式中第5项与第7项的系数之比为38,求k的值;

2)设),且各项系数互不相同.现把这个不同系数随机排成一个三角形数阵:第11个数,第22个数,,第nn个数.设是第i列中的最小数,其中,且i.记的概率为.求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A、B两人进行一局围棋比赛,A获得的概率为0.8,若采用三局两胜制举行一次比赛,现采用随机模拟的方法估计B获胜的概率.先利用计算器或计算机生成0到9之间取整数值的随机数,用0,1,2,3,4,5,6,7表示A获胜;8,9表示B获胜,这样能体现A获胜的概率为0.8.因为采用三局两胜制,所以每3个随机数作为一组.

例如,产生30组随机数:034 743 738 636 964 736 614 698 637 162 332 616 804 560 111 410 959 774 246 762 428 114 572 042 533 237 322 707 360 751,据此估计B获胜的概率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在五面体中,平面平面.

1)求证:

2)若,且二面角的大小为,求二面角的大小.

查看答案和解析>>

同步练习册答案