精英家教网 > 高中数学 > 题目详情
20.已知a>0,x,y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{y≥a(x-3)}\end{array}\right.$,若z=2x+y的最小值为1,则a=$\frac{1}{2}$.

分析 先根据约束条件画出可行域,设z=2x+y,再利用z的几何意义求最值,只需求出直线z=2x+y过可行域内的点B时,从而得到a值即可

解答 解:先根据约束条件画出可行域,
设z=2x+y,
将最大值转化为y轴上的截距,
当直线z=2x+y经过点B时,z最小,
由 $\left\{\begin{array}{l}{x=1}\\{2x+y=1}\end{array}\right.$得:$\left\{\begin{array}{l}{x=1}\\{y=-1}\end{array}\right.$,代入直线y=a(x-3)得,a=$\frac{1}{2}$;
故答案为:$\frac{1}{2}$

点评 本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.线性规划中的最优解,通常是利用平移直线法确定.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数g(x)=2lnx+$\frac{m}{x}$-1,f(x)=$\frac{(x-m)^{2}}{lnx}$.
(1)讨论g(x)的单调性;
(2)当0<m<1时,证明x=m是f(x)极大值点;
(3)若f(x)的3个极值点分别是x1,x2,x3,且x1<x2<x3,证明:x1+x3>$\frac{2}{\sqrt{e}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设数列{bn}的前n项和为Sn,且Sn=2bn-2;数列{an}为等差数列,且a5=14,a7=20.
(1)求数列{bn}的通项公式;
(2)求数列{an}的前n项和Rn
(3)若cn=an•bn,Tn为数列{cn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,角A、B、C所对边分别为a、b、c,若asinB=2bsinAcosC,则角C的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若$\int_1^2{({x-a})}dx=\int_0^{\frac{3π}{4}}{cos2xdx}$,则a等于(  )
A.-1B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知幂函数f(x)=(a2-9a+19)x2a-9的图象恒不过原点,则实数a=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.直线l的斜率k=x2+1(x∈R),则直线l的倾斜角α的范围为$[\frac{π}{4},\frac{π}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.等比数列{an}首项为sinα,公比为cosα,若$\underset{lim}{n→∞}$(a1+a2+…+an)=-$\sqrt{3}$,则α=-$\frac{2π}{3}$+2kπ,k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数f(x)=x3(ax+m•a-x)(x∈R,a>0)且a≠1)是偶函数,则实数m的值为(  )
A.-2B.-1C.1D.2

查看答案和解析>>

同步练习册答案