精英家教网 > 高中数学 > 题目详情
已知定义在R上的函数f(x)=ax3-2bx2+cx+4d(a,b,c,d∈R )的图象关于原点对称,且x=1时,f(x)取极小值-
25

(Ⅰ)求f(x)的解析式;
(Ⅱ)当x∈[-1,1]时,图象旧否存在两点,使得此两点处的切线互相垂直?试证明你的结论.
分析:(Ⅰ)根据“定义在R上的函数f(x)的图象关于原点对称“得出奇偶性,再判断b,d的值,再有在1处的极值求出a,c.
(Ⅱ)用反证法证明.对于存在性问题,可先假设存在,即假设x轴上存在满足条件的点C(x0,0),再利用导数的几何意义,求出不等关系,若出现矛盾,则说明假设不成立,即不存在;否则存在.
解答:解:(Ⅰ)∵函数f(x)的图象关于原点对称,
∴f(0)=0,即4d=0,∴d=0
又f(-1)=-f(1),
即-a-2b-c=-a+2b-c,∴b=0
∴f(x)=ax3+cx,f′(x)=3ax2+c.
∵x=1时,f(x)取极小值-
2
5

∴3a+c=0且 a+c=-
2
5

解得a=
1
5
,c=-
3
5

∴f(x)=
1
5
x3-
3
5
x

(Ⅱ)当x∈[-1,1]时,图象上不存在这样的两点使得结论成立.
假设图象上存在两点A(x1,y1),B(x2,y2),使得过此两点处的切线互相垂直,
则由f′(x)=
3
5
(x2-1)知两点处的切线斜率分别为
k1=
3
5
(
x
2
1
-1)
,k2=
3
5
(
x
2
2
-1)
,且
9
25
(
x
2
1
-1)(
x
2
2
-1)
=1             (*)
∵x1,x2∈[-1,1],
x
2
1
-1≤0,
x
2
2
-1≤0
∴(
x
2
1
-1)(
x
2
2
-1)≥0 此与(*)矛盾,故假设不成立
点评:该题考查导数的几何意义、函数奇偶性对应的奇数次项系数的值以及偶数次项系数的值,考查反证法的使用,考查两数之间最值之差最大,为中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足下列条件:
①对任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函数,
则下列不等式中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  则:
①f(3)的值为
0
0

②f(2011)的值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x+1)=-f(x),且x∈(-1,1]时f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,则f(3)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)是偶函数,对x∈R都有f(2+x)=f(2-x),当f(-3)=-2时,f(2013)的值为(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2013)=(  )
A、0B、2013C、3D、-2013

查看答案和解析>>

同步练习册答案