精英家教网 > 高中数学 > 题目详情
16.已知f(x)=$\left\{\begin{array}{l}{{a}^{x}-a,x>1}\\{{x}^{2}+\frac{1}{2}ax-2,x≤1}\end{array}\right.$是(-$\frac{3}{8}$,+∞)上的增函数,那么a的取值范围是(  )
A.($\frac{3}{2}$,2)B.(1,2]C.[$\frac{3}{2}$,2]D.(1,2)

分析 根据分段函数在(-$\frac{3}{8}$,+∞)上是增函数,y1=ax-a,x>1必须是增函数,即a>1,(1,+∞)单调递增,那么y2=${x}^{2}+\frac{1}{2}ax-2,x≤1$,其对称轴x=$-\frac{a}{4}$,在[$-\frac{a}{4}$,1]必须是单调递增.结合单调递增的性质,y1≥y2可得结论.

解答 解:分段函数在(-$\frac{3}{8}$,+∞)上是增函数,y1=ax-a,x>1必须是增函数,即a>1,(1,+∞)单调递增,
那么y2=${x}^{2}+\frac{1}{2}ax-2,x≤1$,其对称轴x=$-\frac{a}{4}$,在[$-\frac{a}{4}$,1]必须是单调递增.
∴$-\frac{3}{8}≥-\frac{a}{4}$,解得:$a≥\frac{3}{2}$.
在(-$\frac{3}{8}$,+∞)上是增函数,那么y1的最小值要大于y2的最大值,即1$+\frac{1}{2}a-2≤0$,
解得:a≤2
∴a的取值范围是[$\frac{3}{2}$,2].
故选:C.

点评 本题考查了分段函数单调性的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.向面积为S的平行四边形ABCD中任投一点M,则△MCD的面积小于$\frac{S}{3}$的概率为(  )
A.$\frac{1}{3}$B.$\frac{3}{5}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=loga$\frac{2+x}{2-x}$(a>0且a≠1)
(1)求f(x)的定义域;
(2)判断f(x)的奇偶性;
(3)当 a>1时,求使f(x)>0成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知四棱锥P-ABCD,PA⊥底面ABCD,其三视图如下,若M是PD的中点.
(1)求证:PB∥平面MAC;
(2)求证:CD⊥平面PAD;
(3)求直线CM与平面PAD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.给出下面四个命题(其中m,n,l为空间中不同的直线,α,β是空间中不同的平面)中正确的命题为(  )
A.m∥n,n∥α⇒m∥αB.α⊥β,α∩β=m,l⊥m⇒l⊥β
C.l⊥m,l⊥n,m?α,n?α⇒l⊥αD.m∩n=A,m∥α,m∥β,n∥α,n∥β⇒α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知R是实数集,A={y|y=2x-1,x∈R},B={x|y=log2(1-x2)},则A∩B=(  )
A.(-1,+∞)B.(-1,1)C.[-1,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知点$({\sqrt{2},2})$与点$({-2,-\frac{1}{2}})$分别在幂函数f(x),g(x)的图象上.
(1)分别求幂函数f(x),g(x)的解析式,并在同一直角坐标系中画出两个函数的图象;
(2)观察图象,并指出当x为何值时,有:①f(x)>g(x);②f(x)=g(x);③f(x)<g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.要得到函数y=3cos2x的图象,只需将函数$y=3cos({2x+\frac{π}{3}})$的图象(  )
A.向左平移$\frac{π}{3}$个单位长度B.向右平移$\frac{π}{3}$个单位长度
C.向左平移$\frac{π}{6}$个单位长度D.向右平移$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b,则b为(  )
A.-1B.0C.1D.无法确定

查看答案和解析>>

同步练习册答案