精英家教网 > 高中数学 > 题目详情
已知函数
(Ⅰ)求函数的单调区间和最小值;
(Ⅱ)若函数上是最小值为,求的值;
(Ⅲ)当(其中="2.718" 28…是自然对数的底数).
(Ⅰ) (Ⅱ);(Ⅲ).
(I)求导,利用导数大(小)于零,求其单调增(减)区间即可.然后再研究出极值和最值.
(II)再分当两种情况研究其单调性确定其最小值,根据最小值为建立关于a的方程,求出a的值.
(III)解本小题的关键是由(I)可知当时,有
.从而可得.
解:(Ⅰ)

同理,令
∴f(x)单调递增区间为,单调递减区间为.
由此可知 
(Ⅱ)
时,,F(x)在上单调递增,
,舍去 
时,单调递减,在单调递增
,F(x)在上单调递增,
舍  
单调递减,在单调递增,

,F(x)在上单调递减,

综上所述:
(Ⅲ)由(I)可知当时,有
.
.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(15分)已知函数.
(1)若的切线,函数处取得极值1,求的值;
证明:
(3)若,且函数上单调递增,
求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数),
(Ⅰ)若,曲线在点处的切线与轴垂直,求的值;
(Ⅱ)在(Ⅰ)的条件下,求证:
(Ⅲ)若,试探究函数的图象在其公共点处是否存在公切线,若存在,研究值的个数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数图象上一点P(2,f(2))处的切线方程为
(1)求的值;
(2) 若方程内有两个不等实根,求的取值范围(其中为自然对数的底);
(3)令,如果图象与轴交于,AB中点为,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(Ⅰ)求的单调区间;
(Ⅱ)证明:当时,
(Ⅲ)证明:当,且…,时,
(1)
(2) .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知函数.
(1)当时,求证:函数上单调递增;
(2)若函数有三个零点,求的值;
(3)若存在,使得,试求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知函数.
(1)若上是增函数,求实数的取值范围;
(2)若的极值点,求上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知函数,其中.
(Ⅰ)若的极值点,求的值;
(Ⅱ)求的单调区间;
(Ⅲ)若上的最大值是,求的取值范围 .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数上可导,其导函数,且函数处取得极小值,
则函数的图象可能是(  )

查看答案和解析>>

同步练习册答案