精英家教网 > 高中数学 > 题目详情
已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a2=5,则++…+)=( )
A.2
B.
C.1
D.
【答案】分析:根据题意,数列{log2(an-1)}(n∈N*)为等差数列,设其公差为d,则log2(an-1)-log2(an-1-1)=d,由对数的运算性质可得,=2d,又由a1=3,a2=5,可得=2,则可得{an-1}是以a1-1=2为首项,公比为2的等比数列,进而可得an=2n+1,结合题意有an-an-1=2n-2n-1=2n-1,代入可得答案.
解答:解:数列{log2(an-1)}(n∈N*)为等差数列,
设其公差为d,则log2(an-1)-log2(an-1-1)=d,
=2d,又由a1=3,a2=5,
则d=1,即=2,
{an-1}是以a1-1=2为首项,公比为2的等比数列,
进而可得,an-1=2n,则an=2n+1,
故an-an-1=2n-2n-1=2n-1
++…+)=++…+)=1,
故选C.
点评:本题考查等差、等比数列的性质与极限的运算,注意与对数函数或指数函数的结合运用时,往往同时涉及等比、等差数列的性质,是一个难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a3=9.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a2=5,则
lim
n→∞
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
)=(  )
A、2
B、
3
2
C、1
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a3=9
(1)求数列{an}的通项公式;
(2)求使
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
2012
2013
成立的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{log2(an-1)}(n∈N+)为等差数列,且a1=3,a2=5,则
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•抚州模拟)已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a2=5,则
lim
n→∞
(
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
)
=
1
1

查看答案和解析>>

同步练习册答案