精英家教网 > 高中数学 > 题目详情

【题目】喜羊羊家族的四位成员与灰太狼、红太狼进行谈判,通过谈判他们握手言和,准备一起照合影像(排成一排).

(1)要求喜羊羊家族的四位成员必须相邻,有多少种排法?

(2)要求灰太狼、红太狼不相邻,有多少种排法?

(3)记灰太狼和红太狼之间的喜羊羊家族的成员个数为,求的概率分布表和数学期望.

【答案】(1)144.(2)480.(3)见解析.

【解析】

(1)把喜羊羊家族的四位成员看成一个元素,利用捆绑法求解;

(2)把喜羊羊家族的四位成员先排好,利用插空法求解;

(3)先求的所有取值,再求解每个取值的概率,可得分布表和数学期望.

(1)把喜羊羊家族的四位成员看成一个元素,排法为.又因为四位成员交换顺序产生不同排列,所以共有种排法.

(2)第一步,将喜羊羊家族的四位成员排好,有种排法;第二步,让灰太狼、红太狼插入四人形成的空(包括两端),有种排法,共有种排法.

(3)

的概率分布表如下:

0

1

2

3

4

数学期望为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)证明:函数在区间存在唯一的极小值点,且

(2)证明:函数于有且仅有两个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年诺贝尔生理学或医学奖获得者威廉·凯林(WilliamG.KaelinJr)在研究肾癌的抑制剂过程中使用的输液瓶可以视为两个圆柱的组合体.开始输液时,滴管内匀速滴下液体(滴管内液体忽略不计),设输液开始后分钟,瓶内液面与进气管的距离为厘米,已知当时,.如果瓶内的药液恰好分钟滴完.则函数的图像为(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数对一切实数都有成立,且.

1)求的值;

2)求的解析式;

3)已知,设:当时,不等式恒成立;:当时,是单调函数.如果满足成立的的集合记为,满足成立的的集合记为,求为全集).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题;命题q:函数有两个零点.

1)若为假命题,求实数的取值范围;

2)若为真命题,为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆经过伸缩变换后得到曲线以坐标原点为极点,轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,建立极坐标系,直线的极坐标方程为

(1)求曲线的直角坐标方程及直线的直角坐标方程;

(2)设点上一动点,求点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司对员工实行新的临时事假制度:“每位员工每月在正常的工作时间临时有事,可请假至多三次,每次至多一小时”,现对该制度实施以来名员工请假的次数进行调查统计,结果如下表所示:

请假次数

人数

根据上表信息解答以下问题:

(1)从该公司任选两名员工,求这两人请假次数之和恰为的概率;

(2)从该公司任选两名员工,用表示这两人请假次数之差的绝对值,求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一组数据:

125 121 123 125 127 129 125 128 130

129 126 124 125 127 126 122 124 125

126 128

1)填写下面的频率分布表:

分组

频数累计

频数

频率

合计

2)作出频率分布直方图.

3)根据频率分布直方图或频率分布表求这组数据的众数、中位数和平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线过点,且与抛物线相交于两点,与轴交于点,其中点在第四象限,为坐标原点.

(Ⅰ)当中点时,求直线的方程;

(Ⅱ)以为直径的圆交直线于点,求的值.

查看答案和解析>>

同步练习册答案