精英家教网 > 高中数学 > 题目详情

【题目】下列说法中,正确的有_______.

①回归直线恒过点,且至少过一个样本点;

②根据列列联表中的数据计算得出,而,则有99%的把握认为两个分类变量有关系;

是用来判断两个分类变量是否相关的随机变量,当的值很小时可以推断两个变量不相关;

【答案】

【解析】

利用回归直线,独立性检验的概念进行判断.

①回归直线一定过中心点,可能不过任何一个样本点,①错;

②根据列列联表中的数据计算得出,而,则有99%的把握认为两个分类变量有关系,有1%的可能性使得“两个变量有关系”的推断出现错误.②正确;

是用来判断两个分类变量是否相关的随机变量,的值的大小用来判断两变量相关性的可能性的大小,不是用来判断两变量是否相关,③错误

故答案为:②.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,四边形为矩形, 为等腰三角形, ,平面平面,且分别为的中点.

(1)证明: 平面

(2)证明:平面平面

(3)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,平面,四边形为菱形,四边形为梯形,且M为线段的中点.

1)求证:平面

2)求平面将多面体分成的两个部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,已知曲线的参数方程为 为参数).以坐标原点为极点, 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.

(Ⅰ)当时,求曲线上的点到直线的距离的最大值

(Ⅱ)若曲线上的所有点都在直线的下方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分,()小问6分,()小问6分)一家公司计划生产某种小型产品的月固定成本为万元,每生产万件需要再投入万元.设该公司一个月内生产该小型产品万件并全部销售完,每万件的销售收入为万元,且每万件国家给予补助万元. 为自然对数的底数,是一个常数.

)写出月利润(万元)关于月产量(万件)的函数解析式;

)当月生产量在万件时,求该公司在生产这种小型产品中所获得的月利润最大值(万元)及此时的月生产量值(万件). (注:月利润=月销售收入+月国家补助-月总成本).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年篮球世界杯在中国举行,中国男篮由于主场作战而备受观众瞩目.为了调查国人对中国男篮能否进入十六强持有的态度,调查人员随机抽取了男性观众与女性观众各100名进行调查,所得情况如下表所示:

男性观众

女性观众

认为中国男篮能够进入十六强

60

认为中国男篮不能进入十六强

若在被抽查的200名观众中随机抽取1人,抽到认为中国男篮不能进入十六强的女性观众的概率为.

1)完善上述表格;

2)是否有99%的把握认为性别与对中国男篮能否进入十六强持有的态度有关?

附:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆与抛物线有公共的焦点,且公共弦长为

1)求的值.

2)过的直线两点,交两点,且,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

的单调区间;

证明:其中e是自然对数的底数,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,正方形所在平面与正所在平面垂直,分别为的中点,在棱上.

(1)证明:平面

(2)已知,点的距离为,求三棱锥的体积.

查看答案和解析>>

同步练习册答案