【题目】下列说法中,正确的有_______.
①回归直线恒过点,且至少过一个样本点;
②根据列列联表中的数据计算得出,而,则有99%的把握认为两个分类变量有关系;
③是用来判断两个分类变量是否相关的随机变量,当的值很小时可以推断两个变量不相关;
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥中,四边形为矩形, 为等腰三角形, ,平面平面,且, , 分别为的中点.
(1)证明: 平面;
(2)证明:平面平面;
(3)求四棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体中,平面,四边形为菱形,四边形为梯形,且,,,,M为线段的中点.
(1)求证:平面;
(2)求平面将多面体分成的两个部分的体积之比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,已知曲线的参数方程为(, 为参数).以坐标原点为极点, 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.
(Ⅰ)当时,求曲线上的点到直线的距离的最大值;
(Ⅱ)若曲线上的所有点都在直线的下方,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分,(Ⅰ)小问6分,(Ⅱ)小问6分)一家公司计划生产某种小型产品的月固定成本为万元,每生产万件需要再投入万元.设该公司一个月内生产该小型产品万件并全部销售完,每万件的销售收入为万元,且每万件国家给予补助万元. (为自然对数的底数,是一个常数.)
(Ⅰ)写出月利润(万元)关于月产量(万件)的函数解析式;
(Ⅱ)当月生产量在万件时,求该公司在生产这种小型产品中所获得的月利润最大值(万元)及此时的月生产量值(万件). (注:月利润=月销售收入+月国家补助-月总成本).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年篮球世界杯在中国举行,中国男篮由于主场作战而备受观众瞩目.为了调查国人对中国男篮能否进入十六强持有的态度,调查人员随机抽取了男性观众与女性观众各100名进行调查,所得情况如下表所示:
男性观众 | 女性观众 | |
认为中国男篮能够进入十六强 | 60 | |
认为中国男篮不能进入十六强 |
若在被抽查的200名观众中随机抽取1人,抽到认为中国男篮不能进入十六强的女性观众的概率为.
(1)完善上述表格;
(2)是否有99%的把握认为性别与对中国男篮能否进入十六强持有的态度有关?
附:,其中.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com